UNITED STATES DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY

RECONNAISSANCE OF THE WATER RESOURCES OF THE HOH INDIAN RESERVATION AND THE HOH RIVER BASIN, WASHINGTON

By W. E. Lum II

With a Section on Fluvial Sediment Transport in the Hoh River by L. M. Nelson

U.S. GEOLOGICAL SURVEY

Water-Resources Investigations Report 85-4018

Prepared in cooperation with the

HOH INDIAN TRIBE

UNITED STATES DEPARTMENT OF THE INTERIOR

DONALD PAUL HODEL, Secretary

GEOLOGICAL SURVEY

Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 1201 Pacific Avenue - Suite 600 Tacoma, Washington 98402-4384 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Box 25425, Federal Center, Bldg. 41 Denver, Colorado 80225 Telephone (303) 236-7476

CONTENTS

Abstrac	ct
	action
Pur	rpose and scope of the study
Des	scription of the study area
C1.4	imate of the Hoh River basin
	hydrologic cycle
Pro	evious investigations
Geologi	y and ground-water resources
Georogy	ology of the Hoh River basin
Cec	ound-water occurrence
нус	drologic testing on the Hoh Indian Reservation Test trenches
	Test wells
. .	
	tential for development of ground-water supplies
	nfiltration tests
	e-water resources of the Hoh River basin
Hol	n River and its tributaries
	Streamflow characteristics
	Quality of water
Flu	ivial sediment in the Hoh River, by L. M. Nelson
Cha	alaat Creek
	Streamflow characteristics
	Quality of water
Summary	and conclusions
Selecte	ed references
	ILLUSTRATIONS
FIGURE	
	Reservation, Wash
	2. Map of the Hoh Indian Reservation, Wash., showing data-
	collection sites
	3. Graphs showing average monthly precipitation and
	temperature at Quillayute, Wash
	4. Diagrammatic sketch of the hydrologic cycle
	5. Map showing the generalized surficial geology of the
	Hoh Indian Reservation, Wash
	Reservation, Wash
	7. Graph showing average mean monthly flow of the Hoh
	River (site 16) for 1962-73
	8. Graph showing relation of instantaneous suspended-
	sediment concentration to concurrent water discharge
	(site 16)
	9. Graph showing daily precipitation at Quillayute, Wash.,
	and mean daily streamflow of Chalaat Creek (site 26)

TABLES

		Page
TABLE 1.	Lithologic logs of test trenches and wells on the Hoh Indian Reservation, Washington	24
2.	Mean daily discharge of the Hoh River (site 16) for water years 1977-80	25
3.	Water-quality sampling sites in the Hoh River basin, Washington	29
4.	Water-quality data for the Hoh River at selected sites and for selected tributaries to the Hoh River, 1977-80	30
5.	Daily suspended-sediment data for Hoh River (site 16), March 1, 1978-February 29, 1980	42
6.	Mean daily discharge for Chalaat Creek (site 26) for water years 1977-79	50
7.	Miscellaneous streamflow measurements of Chalaat Creek (site 25) 1977-79	52
8.	Water-quality data for two sites on Chalaat Creek for 1978-79	53

CONVERSION FACTORS, INCH-POUND TO METRIC

Multiply inch-pound units	Ву	To obtain SI units
inch (in.)	25.4	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
acre	4,047	square meter (m ²)
2	0.4047	hectare
square mile (mi ²)	2.590	square kilometer (km²)
gallon (gal)	3.785	liter (L)
	0.003785	cubic meter (m)
million gallons (Mgal)	3,785	cubic meter (m)
cubic foot per second (ft /s)	0.02832	cubic meter per second (m /s)
gallon per minute (gal/min)	0.06308	liters per second (L/s)
ton, short	0.9072	megagram (Mg)
micromhos per centimeter at		microsiemen per centimeter at
25 Celsius (umhos/cm at 25 C)-	1.000	25 Celsius (uS/cm at 25 C)
degree Fahrenheit (°F) (°C	= 5/9 (F -32)	degree Celsius (C)

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called "mean sea level." NGVD of 1929 is referred to as sea level in this report.

RECONNAISSANCE OF THE WATER RESOURCES OF THE HOH INDIAN RESERVATION AND THE HOH RIVER BASIN, WASHINGTON

With a Section on Fluvial Sediment Transport in the Hoh River—by L. M. Nelson

By W. E. Lum II

ABSTRACT

The Hoh Indian Reservation lies on the Pacific Ocean coast at the mouth of the Hoh River, a generally westward-flowing river draining the west slope of the Olympic Mountains in western Washington. Ground- and surface-water resources of the reservation and the Hoh River basin were studied during 1977-80, under a cooperative agreement between the U.S. Geological Survey and the Hoh Indian Tribe.

Moderate quantities of ground water can be obtained from near-surface, river-deposited sands and gravels on the northeastern part of the reservation. Wells drilled to a depth of about 20 to 30 feet near a pond in an oxbow lake on the Hoh River flood plain would probably yield 25 to 50 gallons per minute. Several wells could be pumped at this rate, probably indefinitely. The source of well water would be ground-water recharge from the pond, induced by pumping. Geologic units in other areas of the reservation appear to have a low hydraulic conductivity and would yield little, if any, water to wells.

Soils on the reservation were tested to determine infiltration rates at seven sites where housing construction is planned. On the basis of test results, the soils are considered adequate for waste disposal in septic tanks and associated drain fields.

The chemical and bacteriological quality of the Hoh River and its major tributaries downstream from the Olympic National Park boundary is good. With minor exceptions, no unusual or harmful levels of chemical constituents or physical characteristics of the water were detected. Small increases in concentrations of sodium, chloride, silica, nitrite-plus-nitrate, and turbidity were measured in water samples collected from the Hoh River. The increase in a downstream direction is probably the result of natural weathering of rocks and soils in the basin.

Fluvial-sediment transport of the Hoh River was 82,000 tons from March 1978 to February 1979 and 1,510,000 tons from March 1979 to February 1980. Mean annual transport was estimated to be 630,000 tons. About 60 percent of the sediment transported by the Hoh River originates from within the boundaries of the Olympic National Park, which includes about 70 percent of the Hoh River drainage basin.

Chemical and bacteriological quality of Chalaat Creek, which flows across the reservation, is good, although fecal-coliform bacteria concentrations as high as 33 colonies per 100 milliliters were found during this study.

INTRODUCTION

Purpose and Scope of the Study

Under a cooperative agreement with the Hoh Indian Tribe, the U.S. Geological Survey made a reconnaissance of the ground- and surface-water resources of the Hoh Indian Reservation and the surface-water resources of the Hoh River basin. Specifically, data were needed for planning and management purposes concerning the following.

- 1. A qualitative evaluation of ground-water occurrence on the reservation.
- 2. The suitability of soils for waste-water disposal in septic tanks and drain fields in selected areas on the reservation.
- 3. Chemical and bacteriological quality during summertime low-flow conditions of the Hoh River and its downstream tributaries.
- 4. Fluvial-sediment transport of the Hoh River at various streamflow rates.
- 5. Quality and quantity of water available from Chalaat Creek, a small stream draining part of the reservation.

For the ground-water phase of the investigation, a reconnaissance of the surficial geology was made. Two large trenches were dug to investigate the occurrence of ground water near the Hoh River, and test wells were drilled to investigate the occurrence of ground water at two other sites. To determine the suitability of soils for waste-water disposal, rates of percolation were determined at selected sites.

The quality of water in the Hoh River and some of its downstream tributaries was assessed from a comprehensive set of water samples collected during September 1978. Samples from 12 tributaries and from the Hoh River at 13 sites (all sites downstream of river mile 30.0) were collected and analyzed for selected chemical constituents and physical properties. The fluvial-sediment transport of the Hoh River was studied at three sites (river mile 0.6, 15.4, and 25.8) by obtaining and analyzing more than 300 samples of river water from 1978 to 1980. The quantity and quality of water in Chalaat Creek were investigated at two sites on the reservation to assess the potential use of water from the creek for fisheries programs. A continuous recorder was installed and operated to gage the flow of the stream at one site and miscellaneous measurements of streamflow were made at another site during 1977 to 1979. Water-quality samples were collected periodically during 1978 to 1979 at these two sites.

Description of the Study Area

The Hoh Indian Reservation is in western Washington, on the west coast of the Olympic Peninsula, at the mouth of the Hoh River (fig. 1). The reservation, 60 miles north of Aberdeen, Wash., and 100 miles west of Seattle, Wash., covers approximately 450 acres and is about 1 mile north to south and 0.75 mile east to west (fig. 2). One-half the reservation ranges from sea level to an altitude of 40 feet; this is the area inhabited by residents of the reservation, about 60 people in 1978. The remainder of the reservation, logged in 1960, ranges in altitude from 40 to 160 feet above sea level. Chalaat Creek (drainage basin approximately 1 square mile) flows north and west across the reservation. Artificial impoundments in Chalaat Creek are currently used for fisheries programs including fish rearing.

The Hoh River basin (area 299 square miles) lies on the western slopes of the Olympic Mountains. This glacier-fed river has its headwaters on Mount Olympus, altitude 7,956 feet above sea level. Most of the basin is forested uplands. Extensive commercial logging has continued for more than 80 years in the basin.

Climate of the Hoh River Basin

The wet, mild climate of the Hoh River basin is dominated by the influence of offshore marine air. Average annual precipitation ranges from about 90 inches near the Pacific coast, including the Hoh Indian Reservation, to 240 inches per year on the upper slopes of the Olympic Mountains (U.S. Weather Bureau, 1965). A weather observation station at Quillayute, Wash., 15 miles north of the reservation, has provided a long-term record of precipitation and average temperature (U.S. National Oceanic and Atmospheric Administration, 1981) to determine a representative monthly distribution of these climatic factors for the reservation and the Hoh River basin. The average annual precipitation at Quillayute for the period 1966 to 1980 is 104.99 inches, and the average annual temperature is 48.7°F. Average monthly precipitation (fig. 3) ranges from 2.36 inches in July to 15.60 inches in December. About 75 percent of the average annual precipitation occurs in the 6-month period from October to March. Average monthly temperature (fig. 3) ranges from 38.7°F in January to 59.0°F in July.

There are no weather observation stations in the Olympic Mountains; however, it is known that most precipitation occurring during November through April (when average monthly temperatures remain below 32°F at higher altitudes) accumulates as snow. Total snowfall is as much as 30 feet. Most snowmelt occurs from May to August, but glaciers and perennial snowfields also exist at the headwaters of the Hoh River and other nearby areas in the Olympic Mountains.

FIGURE 1.--The Hoh River basin and the Hoh Indian Reservation, Washington.

FIGURE 2.--The Hoh Indian Reservation, showing data-collection sites.

FIGURE 3.--Average monthly precipitation and temperature at Quillayute, Wash.

The Hydrologic Cycle

The hydrologic cycle is the pattern of water movement as it circulates through the natural system. Figure 4 diagrammatically illustrates the hydrologic cycle as it generally applies to the study area. Precipitation as rain and snow is the source of all freshwater. Part of the precipitation runs off rapidly to streams, part is evaporated directly back to the atmosphere from the ground and from lakes, streams, and plant surfaces, and part is soaked into the soil where some is drawn up by plants and returns to the atmosphere by transpiration from the leaves. Some precipitation, temporarily stored during winter in glaciers and snowfields, is released to streams during warmer months. The remainder percolates downward to a zone of saturation to become ground water. In time, ground water returns to the surface-water system by seepage to springs, lakes, streams, and the sea.

FIGURE 4. -- The hydrologic cycle.

Previous Investigations

The geology of the Olympic Peninsula has been the subject of numerous investigations. Reconnaissance mapping began as early as the 1890's. Systematic mapping of the peninsula began in the 1930's and is continuing. A comprehensive geologic map published in 1978 (Tabor and others, 1978) includes references to most historic studies. No studies have dealt specifically with geology or water resources of the Hoh Indian Reservation or the water resources of the Hoh River basin.

GEOLOGY AND GROUND-WATER RESOURCES

Geology of the Hoh River Basin

The Hoh River basin is underlain by bedrock composed of consolidated sedimentary and metamorphic rocks, including sandstone, siltstone, conglomerate, slate, and tectonic breccia (metamorphic rocks consisting of broken pieces of older sedimentary rocks). Quaternary surficial deposits consisting of glacial and non-glacial sedimentary rocks cover the Tertiary bedrock in about 35 percent, or 104 square miles, of the basin. They are commonly 20 to 100 feet in thickness, but locally may be as much as several hundred feet thick. The surficial deposits consist of a variety of mixtures of gravel, sand, clay, and silt. Beach deposits on the ocean coast, landslide materials, and river-deposited alluvium, which include broken and weathered pieces of older rock, are the most recent deposits in the basin.

All geologic units discussed above also occur on the reservation. The bedrock, which is siltstone and sandstone on the reservation, is overlain by various unconsolidated deposits whose composition and distribution are described and shown in figure 5. A typical geologic section across the reservation is shown in figure 6.

Ground-Water Occurrence

Ground water can be found in virtually all the glacial and nonglacial, unconsolidated deposits that occur in the Hoh River basin. The quantity of ground water available for withdrawal varies greatly from one location to another because of the different hydraulic characteristics of the unconsolidated materials present.

The consolidated sedimentary and metamorphic rocks that underlie the unconsolidated deposits are exposed in places and may contain some ground water, but the quantity of water that could be withdrawn is probably small because of the low permeability of these deposits. The occurrence of ground water in the consolidated deposits was not investigated for this study.

FIGURE 5.--The generalized surficial geology of the Hoh Indian Reservation, Wash.

EXPLANATION

- Qg Beach deposits, sand and gravel
- Qs Land slide and talus slopes, disturbed materials
- Qr River sand and gravel deposits
- Qt Till, poorly sorted clay, silt, sand, and gravel
- Qro Older river sand and gravel deposits
- T Siltstone and sandstone (bedrock)

FIGURE 6.--Generalized geologic section of the Hoh Indian Reservation, Wash.

Hydrologic Testing on the Hoh Indian Reservation

Two trenches were dug and two test wells were drilled in 1978 to investigate the occurrence of ground water in the unconsolidated deposits underlying the reservation. During digging and drilling operations and after completion of the structures, pertinent tests were performed to determine potential short-term yield of ground water at selected sites (fig. 2).

Test Trenches

Two trenches were dug near a pond occupying an oxbow of the Hoh River (fig. 2) to determine the availability of ground water to supply a proposed fish hatchery. Lithologic logs of the trenches are shown in table 1, end of report. Trench 1 was 15 by 15 feet and 23 feet deep. Ground water was found in a sand-and-gravel layer 8 to 13 feet below land surface. Ground-water inflow to the trench during the digging operations was about 30 to 50 gal/min from the sand-and-gravel unit. Materials below the sand and gravel consisted of clay and silt, which are generally porous materials but yield only small quantities of water. Trench 2, which was 20 by 20 feet and 30 feet deep, revealed a similar sequence of units. Inflow to the trench from the sand-and-gravel unit (8 to 17 feet below land surface at this location) was about 100 gal/min. Equipment used to dig the trenches was not capable of digging deep enough to penetrate the clay-and-silt layer in either trench.

Test Wells

The occurrence of ground water in deeper unconsolidated deposits on the reservation was investigated by drilling two test wells, one on the southern upland area of the reservation, where additional housing may be located, and one near the proposed hatchery location just west of the oxbow pond and test trenches previously discussed (fig. 2). Lithologic logs of the wells are presented in table 1 (end of report).

Well 1, at the upland site, was drilled to a depth of 394 feet below land surface. A shallow water table was found at a depth of about 20 feet; however, the hydraulic conductivity of the materials was low, and water could not be withdrawn from this well in significant quantities.

Well 2, near the proposed hatchery, was drilled to a depth of 94 feet. To a depth of 30 feet, materials penetrated in this well were similar to those found in the nearby trenches. The gravel-and-sand layer found between 18 and 21 feet below land surface, is probably the same unit found in trench 1 between 8 and 13 feet and in trench 2 between 8 and 17 feet below land surface. Bailer testing of well 2 indicated a short-term yield of about 15 to 25 gal/min from the sand-and-gravel unit.

The clay-and-silt unit (below 13 feet in trench 1 and below 17 feet in trench 2) was determined to extend to 36 feet below land surface in well 2. Below this unit, a fine sand, silt, and clay unit was penetrated. These materials were saturated with ground water, but had a low hydraulic conductivity and yielded only small quantities of water (less than 5 gal/min) when preliminary bailer testing was done. A pumping test of this well was attempted after installing a well screen between 48 and 87 feet below land surface, but all the water in the well casing could be pumped out at a pumping rate of less than 30 gal/min. No further testing of this well was attempted.

Potential for Development of Ground-Water Supplies

Nearly all the unconsolidated deposits that underlie the reservation are saturated with ground water. To develop ground-water supplies from these materials, however, a well must be open to deposits that have a saturated thickness of materials sufficiently permeable to make it feasible to pump the water.

The results of drilling test wells 1 and 2 suggest that the till unit and the unit of older river deposits (units Qt and Qro, respectively, on fig. 5) probably do not include such materials. However, the older river deposits may contain coarser materials locally that were not present at any of the test well or test trench locations. These coarser materials, if they are found, may have sufficient permeability to yield water to wells penetrating them. Although the locations of these materials could not be determined from available data, additional test drilling may be successful in locating water supplies from the older river deposits.

The river-deposited sand and gravel (unit Qro, fig. 5) is penetrated by well 2 and trenches 1 and 2 (fig. 2). Individual wells (each 20 to 30 feet deep) tapping this unit could probably be pumped at a rate of 25 to 50 gal/min. By placing several wells in a line parallel to the oxbow pond (near well 2 and the two trenches), a moderately large supply of ground water could be obtained. Pumping at the specified rate (or greater rate if testing shows the wells capable) could probably be continued indefinitely. After some ground water was initially removed from storage within the aquifer, the wells would cause water from the pond in the cutoff meander to infiltrate to the sand-and-gravel layer. This water, now ground water, would move quickly to the pumping wells, where it would be removed for use. The pond, which drains into the Hoh River about 500 feet north of trench 2, is fed by spring discharge that occurs primarily from an area 2,000 to 4,000 feet east of the eastern reservation boundary. Flow out of the pond varies greatly, but the observed minimum was estimated to be 1,300 to 2,200 gal/min (3 to 5 ft³/s).

The quality of surface and ground water and the suitability for any specific use was not investigated for this study.

SOIL INFILTRATION TESTS

Successful disposal of sewage waste by means of septic tanks and drain fields requires that the soil present be capable of accepting the amount of anticipated waste water. This capacity to accept the waste is usually determined by a soil infiltration test. To determine the suitability of soils for sewage waste disposal at selected locations on the reservation, holes were augered into the soil profile (depth of holes 3 to 5 ft) at seven locations (fig. 2) in areas where the construction of homes has been proposed.

A standard soil infiltration test (U.S. Public Health Service, 1967; Washington State Department of Social and Health Services, 1974) was performed at each site, and on this basis the soils were rated as to suitability for disposal of sewage waste. The results are listed below. Soil infiltration rate is the rate of water-level fall in a test hole filled with water, and is expressed in terms of the number of minutes it took for the water level to fall 1 inch. The ratings given are based on standards established by the U.S. Public Health Service (1967).

Site (see fig. 2)	Infiltration rate (minutes per inch of water-level fall)	Rating of soil for waste disposal
1	2	Good
2	3	Good
3	19	Poor
4	6	Fair
5	8	Fair
6	10	Poor
7	8	Fair

Although two sites were rated as "poor," this rating is considered acceptable for waste disposal by the references cited above. The design and size of the drain fields should be based on the quantity of waste to be disposed of and the soil type and capacity to accept waste water. On the basis of similarity of observed soil types throughout the reservation, all areas of the reservation are considered to be adequate for on-site sewage waste disposal. Further testing should be conducted to determine the suitability of soils and the size of the drain field needed at each particular site.

SURFACE-WATER RESOURCES OF THE HOH RIVER BASIN

Hoh River and its Tributaries

The Hoh River flows generally westward from the Olympic Mountains across glaciated lowland coastal terraces and into the Pacific Ocean. Significant tributaries draining primarily mountainous areas include Glacier Creek, Mount Tom Creek, and the South Fork Hoh River. Tributaries draining lowland areas include Owl, Maple, Winfield, Alder, Nolan, and Braden Creeks. Many of these streams are used by a variety of fish species for migration, spawning, and residence.

Streamflow Characteristics

Throughout the Hoh River basin, streamflow is not artificially stored or diverted, and is the result of rainfall, snowmelt, and ground-water discharge. The flow of the Hoh River (fig. 7 and table 2, end of report) generally (1) increases from October through January due to heavy rainfall over the basin, (2) decreases from February through March when most precipitation at higher altitudes is temporarily stored as snow, (3) increases (or remains nearly constant) from May through June due to snowmelt, and (4) decreases from July through September when precipitation is lowest and flow is sustained mostly by ground water discharging into the river and its tributary streams.

FIGURE 7.--Average mean monthly flow of the Hoh River (site 16) for 1962-73.

Quality of Water

Water samples have been taken from selected sites in the Hoh River basin at irregular intervals since before 1960. Annual summaries of water-quality data collected by the U.S. Geological Survey are published in the Water Data for Washington series (U.S. Geological Survey, 1964-81). Currently (1983), the Hoh River at U.S. Highway 101 near Forks, Wash. (site 16, fig. 1, USGS station 12041200) is sampled at regular intervals as part of the National Stream Quality Accounting Network (NASQAN).

For this report in the Hoh River basin, a comprehensive set of water-quality samples was collected on September 19 and 20, 1978, at 13 sites on the Hoh River and from 12 tributaries. (All sites are listed in table 3, at the end of the report, and shown on figure 1 and (or) figure 2.) All sites were downstream of river mile 30.0 (downstream of the Olympic National Park boundary). The samples were analyzed for a variety of common chemical constituents, nutrients, bacteria concentration, and selected physical characteristics. Data are presented in table 4 (end of report), which documents the quality of water in the Hoh River during late summer when low-flow conditions prevail. Samples were collected over a short period to identify any downstream changes in water quality of the Hoh River that may be related to the quality of water from particular tributary streams.

In a study by Dethier (1982), stream water-quality data (collected from 1961 to 1980) were compiled for the Hoh, Humptulips, North Fork Quinault, Queets, Elwha, and Dungeness Rivers, all of which drain the Olympic Mountains. Dethier determined mean concentration values of selected dissolved constituents and the pH in these rivers. As shown by selected constituents and pH values in the table below, the water quality of the Hoh River on September 19 and 20, 1978, was similar to the mean values for rivers in the region. Small differences between concentrations for the Hoh River and for the regionwide mean may be due in part to correction of the regionwide mean to reflect mean annual flow of all the rivers; the Hoh River was sampled during a low summer flow period (flow less than mean annual value).

Mean concentration, in milligrams per liter unless otherwise noted

Chemical constituent or pH	Dethier, 1982	Hoh River at site 16 on September 20, 1978
Calcium	10.4	13
Magnesium	1.2	1.3
Sodium	2.2	2.3
Potassium	.3	.2
Bicarbonate	36.4	33
Sulfate	6.8	11
Chloride	1.6	1.8
Silica	5.9	5.5
pH, in pH units	7.4	7.2

Downstream changes in the water quality of the Hoh River were indicated only by the constituents (and turbidity) shown in the table below. Other constituents and properties for which data are available showed no detectable trend in a downstream direction.

Sampling	River mile	Cor in n				
site (see fig. 1)	(upstream of mouth)	Sodium	Chloride	Silica	Nitrite- plus- nitrate	Turbidity (JTU)*
1	30	1.9	1.4	4.9	0.05	1
2	28.4				.06	1
9	24				.07	2
10	20	2.0	1.5	5.3	.08	2
13	18				.10	2
17	12	2.2	1.8	5.5	.10	2
19	8.9				.10	2
20	6.7	2.1	1.9	5.5	.10	3
23	4.3	2.3	2.0	5.6	.11	3
24	2.3				.11	3
27	0.6	2.6	2.2	5.6	.11	3

*JTU is Jackson Turbidity Units, a measure of the clarity of water, primarily influenced by suspended material in the water.

Concentration of sodium, chloride, silica, and nitrite plus nitrate dissolved in river water and the turbidity of the river water are probably related to natural weathering of the rocks and soils of the basin. The products of weathering are transported by ground water and overland runoff to the tributary streams and then to the Hoh River. The continuously increasing concentrations in a downstream direction are probably the result of downstream increases in the part of the tributary streamflow that is of ground water, which commonly has higher concentrations of minerals.

A comparison of the results of the water-quality analysis of the sampled tributaries to the Hoh River revealed certain isolated, anomalous values. These, in downstream order, include: a high nitrite-plus-nitrate concentration (0.32 mg/L as N) in Canyon Creek (site 3); a low pH (6.1 units) and dissolved-oxygen concentration (7.9 mg/L) with high nitrite-plus-nitrate concentration (0.48 mg/L as N) in Elk Creek (site 12); a high fecal-coliform concentration in Winfield (38 col/100 mL), Lost (87 col/100 mL), and Nolan (40 col/100 mL) Creeks; and high turbidity (7 JTU) in Braden Creek. Without further study, no explanation of the values can be formulated.

Fluvial Sediment in the Hoh River - By L. M. Nelson

Data collected at three sites on the Hoh River from 1978 to 1980 were used to estimate its fluvial-sediment transport. At site 16 (fig. 1), fluvial suspended-sediment samples were obtained daily during high flows and two to three times weekly at other flows. Additional periodic samples were obtained at site 27 (fig. 2) and site 8 (fig. 1). A gaging station on the Hoh River (site 16, fig. 1) provided a continuous stage record from March 1978 to February 1980.

During the 2-year period March 1978 to February 1980, 280 samples were collected at site 16. The suspended-sediment concentrations ranged from 1 to 1,950 mg/L. The streamflow and sediment discharge are closely related at high flows (fig. 8) when most of the streamflow originates from heavy rainfall. At medium and low flows this relation changes considerably, depending upon the source of the water: snowmelt, rainfall, or glacial melt. A suspended-sediment transport record (table 5, end of report) was obtained from these samples. The suspended-sediment concentration generally increases rapidly with the rapidly increasing water discharge. However, the suspended-sediment concentrations are highly dependent upon the rate of change and the magnitude of the water discharge and on other variables such as temperature.

The Hoh River transports highly varying amounts of sediment from year to year, as shown by the difference in total transport during the period March 1978 to February 1979, when 82,000 tons of sediment were transported, and March 1979 to February 1980, when 1,510,000 tons of sediment were transported. Because of the great difference in sediment transport, the problem of estimating the mean annual sediment transport of the Hoh River was approached by assuming that the sediment-transport characteristics are largely unchanged during the much longer period of streamflow records (1960 to 1980). Using the method described by Nelson (1970), the Hoh River transports an estimated mean of 630,000 tons of sediment annually.

Suspended-sediment samples collected at the periodic sites (at mouth, site 27, and near the National Park boundary, site 8) were used to estimate the quantity of sediment originating in the mountains and the quantity originating between the mountains and the river mouth. Analysis of the data indicates that about 60 percent of the sediment transported by the Hoh River at its mouth originates upstream of the sampling site near the park boundary and has its source in the mountainous area of the basin. Drainage area above this site is 208 square miles, or about 70 percent of the total drainage area of the Hoh River.

FIGURE 8.--Relation of instantaneous suspended-sediment concentration to concurrent water discharge (site 16).

Chalaat Creek

The Chalaat Creek drainage basin covers an area of 0.94 square mile above site 26 (fig. 2) in Jefferson County, Washington. The entire drainage basin is underlain by older, river deposited, sands and gravels (unit Qro in fig. 5). Thick underbrush covers much of the basin as a result of logging operations about 1960, and some parts of the basin have since been reforested. Precipitation over the basin is about 90 inches per year (U.S. Weather Bureau, 1965). Chalaat Creek provides water for salmon-rearing ponds (artificial impoundments between sites 25 and 26 in figure 2), and before 1975 provided water for domestic use on the reservation.

Streamflow Characteristics

Streamflow in Chalaat Creek is influenced by trends in precipitation. Maximum flows generally occur from December through February, and minimum flows from August through September (tables 6 and 7, end of report). The response of streamflow at site 26 to precipitation is shown in figure 9. Rains on September 8 and 9, 1978, caused a substantial increase in streamflow in Chalaat Creek on those days. Other periods of rain (of lesser intensity or duration or both) in the same month caused similar but less drastic changes in streamflow. Mean annual streamflow of Chalaat Creek at the community center (site 26, fig. 2) is about 2.4 ft³/s (based on data for 1977-79).

Quality of Water

During the period of 1978-79, water-quality samples were collected seven times at two sites on Chalaat Creek (sites 25 and 26, fig. 2) and analyzed for a variety of chemical constituents and physical properties. Except for moderately high bacteria concentration, results of the analyses (shown in table 8, end of report) indicate no unusual or harmful concentrations of any chemical constituent or unusual physical properties of the water that would restrict its use for most purposes.

Because the water in any stream is subject to contamination from a variety of sources, periodic sampling of Chalaat Creek is suggested as long as it is used for fish rearing. The frequency of sampling and the chemicals and physical properties to be analyzed would depend on the use of the water.

FIGURE 9.--Daily precipitation at Quillayute, Wash., and mean daily streamflow of Chalaat Creek (site 26).

SUMMARY AND CONCLUSIONS

Poorly permeable consolidated sedimentary and metamorphic rocks underlie the entire Hoh River basin. Quaternary surficial deposits of widely ranging permeability consisting of unconsolidated glacial and nonglacial gravel, sand, silt, and clay in a wide variety of mixtures, overlie the Tertiary bedrock in about 35 percent of the basin. These deposits, commonly 20 to 100 feet thick, locally may be as much as several hundred feet in thickness. On the Hoh Indian Reservation permeable sand-and-gravel deposits near the Hoh River may yield 25 to 50 gal/min of water to a well. Several wells 20 to 30 feet deep, placed near a pond occupying an oxbow of the Hoh River, could probably be pumped at this rate indefinitely. The source of the water would be induced recharge from the river or pond into the ground-water system. Other unconsolidated deposits and the bedrock occurring on the reservation have a poor potential for use as water supplies.

Soil infiltration tests were conducted at seven locations where housing may be constructed on the reservation. Rates of infiltration ranged from 2 to 19 minutes per inch of water-level fall. All sites are considered acceptable for disposal of single-family sewage waste through drainfields. Specific sites should be tested further and drainfields designed according to local conditions.

Generally, the quality of water in the Hoh River and its major tributaries was determined to be good and similar to other rivers draining the Olympic Mountains. However, a few anomalous water-quality analyses were noted in samples collected on September 19 and 20, 1978: a high nitrite-plus-nitrate concentration in Canyon Creek; a low pH and dissolved-oxygen concentration with high nitrite-plus-nitrate concentration in Elk Creek; a high fecal-coliform concentration in Winfield, Lost, and Nolan Creeks; and high turbidity in Braden Creek. Downstream increases in concentrations of sodium, chloride, silica, nitrite-plus-nitrate and in turbidity were noted in analyses of water from the Hoh River. The increases in dissolved minerals are probably related to natural weathering of the rocks and soils in the basin. Without further investigation, the anomalously high turbidity and fecal coliform concentrations cannot be explained.

Fluvial-sediment transport data were collected at three sites on the Hoh River. Mean annual transport of the Hoh River was estimated to be 630,000 tons. About 60 percent of the sediment transported by the river originates from within the Olympic National Park, which covers about 70 percent of the total drainage area of the Hoh River.

Chalaat Creek drains about 1 square mile, mostly within the Hoh Indian Reservation. The Hoh Indians use artificial impoundments of Chalaat Creek for fish rearing. The mean annual flow of the creek is about 2.4 ft³/s, and measured mean monthly flows ranged from 0.7 ft³/s in August 1979 to 7.2 ft³/s in March 1979. Streamflow is the result of rainfall, overland runoff, and ground-water discharge to the stream channel. Stream water quality is good, and except for moderately high fecal-coliform bacteria concentrations, no unusual or harmful properties or constituents were noted in the results from seven water-quality analyses taken at each of two sites on the stream from 1978 to 1979.

SELECTED REFERENCES

- Dethier, D. P., 1982, Chemical characteristics for western Washington rivers, 1961-80: U.S. Geological Survey Open-File Report 82-185, 46 p.
- Nelson, L. M., 1970, A method of estimating annual suspended-sediment discharge: <u>in</u> Geological Survey Research, 1970: U.S. Geological Survey Professional Paper 700-C, p. C223-236.
- Tabor, R. W., and Cady, W. M., 1978, Geologic map of the Olympic Peninsula, Washington: U.S. Geological Survey Miscellaneous Investigation Series, Map I-994, 2 pl.
- U.S. Geological Survey, 1964, Water-quality records in Washington: Tacoma, annual report, 227 p.
- ----1965-74, Water resources data for Washington, Part 2, Water-quality records 1964-1973: Tacoma, reports published annually.
- ----1966-81, Water resources data for Washington, Water years 1966-80, volume 1, western Washington: Water-Data Report WA series, 1966-81.
- [U.S.] National Oceanic and Atmospheric Administration, 1981, Climatological data, Washington, annual summary, 1980: v. 84, no. 13, 20 p.
- U.S. Public Health Service, 1967, Manual of septic-tank practice: U.S. Public Health Service, Pub. 526, 92 p.
- U.S. Weather Bureau, 1965, Mean annual precipitation, 1930-57, State of Washington: Portland, Oregon, U.S. Soil Conservation Service Map M-4430, 1 pl.
- Washington Department of Social and Health Services, 1974, Rules and regulations of the State Board of Health for on-site sewage disposal systems: Office of Environmental Health Programs, Health Services Division, Olympia, Washington, 11 p.

TABLE 1.--Lithologic logs of test trenches and wells on the Hoh Indian Reservation, Washington

Geologic unit (fig.5)	Materials	Thick- ness (ft)	Depth (ft)
	Trench #1		
	Silt and clay, gray	8	8
<u>Qr</u>	Sand and gravel	5	13
Qro?	Clay and silt, gray to blue-gray	7	20
	Trench #2		
	Silt and clay, gray	8	8
<u>Qv</u>	Gravel and sand, poorly sorted	9	17
Qro?	Silt and clay, blue-gray	11	28
	Well #1		
	Fill (road bed)	1	1
	Silt, silt with sand, brown	2	4
<u>Qt</u>	Till, brown to gray	11	15
Qro	Clay, gray, with thin sand and gravel layers	12	27
	Sand and gravel, with some gray clay	2	30
	Clay, brown, with thin sand and gravel layers	18	48
	Sand and gravelClay, brown, with some sand, gravel, and	4	52
	cobbles	27	80
	Sand, fine, with brown clay and some gravel	10	90
	Sand, fine, and silt, brown	27	117
	Clay, brown, with fine sand and siltSand, very fine, with gray clay and silt,	33	151
	some thin layers of sand and small gravel	79	230
	Clay and silt, gray	120	350
	Clay and silt, gray, with some thin layers of fine sand and small gravel	44	394
	<u>Well #2</u>		
	Gravel, with sand and clay	14	14
	Silt, gray	3	18
<u>Qr</u>	Gravel and sand	3	21
Qro?	Clay and silt, gray with some thin layers of		
	fine sand and small gravel	15	36
	Sand, very fine, with gray clay and silt and	_,	
	some thin layers of fine sand	54	90

12041200 HOH RIVER AT U.S. HIGHWAY 101, NEAR FORKS. WA

LOCATION.--Lat 47°48'25", long 124°14'59", in NEWNEW sec.33, T.27 N., R.12 W., Jefferson County, Hydrologic Unit 17100101, on left bank 250 ft (76 m) downstream from U.S. Highway 101, 1.0 mi (1.6 km) downstream from Hell Roaring Creek, 11.5 mi (18.5 km) southeast of Forks, and at mile 15.4 (24.8 km).

DRAINAGE AREA. -- 253 m2 (655 km2).

PERIOD OF RECORD. --October 1960 to current year. Chemical analyses July 1960 to September 1961, November 1961, to September 1970 (partial-record station), October 1971 to September 1974. Prior to November 1961, published as 12041000, water temperatures: November 1970 to April 1971.

GAGE. -- Water-stage recorder. Datum of gage is 163.64 ft (49.877 m) above mean sea level.

REMARKS. -- Records good. No regulation or diversion above station.

AVERAGE DISCHARGE.--17 years, 2,566 ft³/s (72.67 m³/s), 137.73 in/yr (3,498 mm/yr), 1,859,000 acre-ft/yr (2,290 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 46,000 ft³/s (1,300 m³/s) Jan. 15, 1961, gage height, 17.74 ft (5.407 m); minimum, 396 ft³/s (11.2 m³/s) Nov. 4, 1974; minimum gage height, 2.40 ft (0.732 m) Sept. 27,

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR DCTORER 1976 TD SEPTEMBER 1977

EXTREMES FOR CURRENT YEAR, -- Peak discharges above base of 16,000 ft³/s (453 m³/s) and maximum (*):

Discharge (ft³/s) (m³/s) Date Time *11,700 331 *9.69 2.954 Jan. 18

Minimum discharge, 450 ft 3 /s (12.7 m 3 /s) Oct. 23, gage height, 3.02 ft (0.920 m).

MEAN

MAX

MEAN VALUES DAY OCT NOV DEC LAN FEB ADD MAY JUN JUL AUG SEP 791 854 2510 7010 986 728 794 3410 1500 27 1150 1140 29 2550 ---TOTAL 3770 7010 2930 1440 970 MEAN 2650 2920 2980 MAX 7.11 8.92 CFSM 3.76 5.23 6.87 7.39 9.35 6.81 4.54 5.46 5.08 4.33 6.30 84950 5.67 76530 5.83 8.86 10.79 5.24 AC-FT CAL YR 1976 TOTAL WTR YR 1977 TOTAL MEAN MIN 455 MIN 455

CFSM 6.50

AC-FT

IN 88.28

TARLE 2 -- Continued

12041200 HOH RIVER AT U.S. HIGHWAY 101, NEAR FORKS, WA

LOCATION.--Lat 47°48'25", long 124°14'59", in NE'NE's sec.33, T.27 N., R.12 W., Jefferson County, Hydrologic Unit 17100101, on left bank 250 ft (°b m) downstream from U.S. Highway 101, 1.0 mi (1.6 km) downstream from Hell Roaring Creek, 11.5 mi (18.5 km) southeast of Forks, and at mile 15.4 (24.8 km).

DRAINAGE AREA. -- 253 m2 (655 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1960 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 163.64 ft (49.877 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records excellent except those above 20,000 ft³/s (566 m³/s) and those for periods Feb. 20 to Mar. 8, Aug. 11-22, and Aug. 27 to Sept. 29; which are fair; No regulation or diversion above station.

AVERAGE DISCHARGE.--18 years, 2,551 ft³/s (72.24 m³/s), 136.93 in/yr (3,478 mm/yr), 1,848,000 acre-ft/yr (2,280 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, 46,000 ft³/s (1,300 m³/s) Jan. 15, 1961, gage height, 17.74 ft (5.407 m); minimum, 396 ft³/s (11.2 m³/s) Nov. 4, 1974; minimum gage height, 2.40 ft (0.732 m) Sept. 27, 1961.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 16,000 ft³/s (453 m³/s) and maximum (*):

			harge	Gage he	ight			Dischar		Gage he	ight
Date	Time	(ft³/s)	(m³/s)	(ft)	(m)	Date	Time	(ft ³ /s)	(m³/s)	(ft)	(m)
Nov. 1	2200		1,270	*17.73	5.404	Dec. 2	1000	27,600	782		4.289
Nov. 14	0600	16,100	456	11.03	3,362	Dec. 11	0400	16,800	476	11.25	3.429
Nov. 25	2 200	17 700	501	11 40	7 502						

DISCHARGE. IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

Minimum discharge, 580 ft 3 /s (16.4 m 3 /s) Oct. 20, 21, gage height, 3.48 ft (1.061 m).

		0.130			ME	AN VALUES						
DAY	ост	NOV	DEC	JAN	FEH	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	914	17800	9050	1480	1380	1000	1580	1090	1460	1510	1010	3000
ş	850	13400	20600	1410		940	1480	1090	1620	1490	1060	4000
3	787	5750	10800	1950	2840	910	1410	1100	1830	1410	1130	2500
4	738	4110	6330	3530		670	1420	1060	2010	1420	1230	2700
5	698	3350	4500	3620	2010	840	1470	970	2170	1330	1130	2000
6	692	3200	5150	2780	2560	900	1710	940	2090	1350	1050	1600
7	766	3610	4950	3330	3650	3300	1610	930	1870	1410	1060	1400
8	717	2820	3610	6970	3A30	2800	1380	930	1770	1440	1100	1300
9	724	3940	3050	3930	3200	1760	1280	1100	1900	1430	1200	3300
10	656	6770	6430	2490	2490	1450	1510	1500	1880	1290	1120	6100
11	626	4910	14100	2540	2080	1320	1160	1430	1620	1190	1200	3300
15	650	4540	9830	5510	1450	1550	1200	1490	1790	1110	1500	2600
13	843	5350	10300	2030		1550	1130	1790	2120	1200	1100	2300
14	724	10900	11500	2470	1620	1180	1100	4020	1940	1320	1000	5000
15	724	5430	6870	5380	1660	1150	1110	3410	1680	1380	1500	1900
16	766	4290	5130	2070	1470	1050	1110	2300	1520	1420	1200	2000
17	692	3530	3960	1930	1350	1000	1280	1850	1430	1350	1000	1700
18	650	2920	3270	1710	1290	978	1550	1640	1490	1230	900	1500
19	632	2540	2810	1600	1290	962	1310	1580	1600	1200	1200	1300
20	596	2270	2490	1500	1250	930	1380	1700	1550	1200	1000	1200
51	585	2080	2300	2190	1200	914	1670	1820	1560	1230	900	1500
5.5	650	1930	2140	2320	1500	938	1560	1580	1580	1290	800	2300
23	3030	1850	1970	1880	1500	1240	1940	1390	1450	1400	858	3400
24	3260	1960	1840	1670	1150	2080	1630	1270	1340	1370	2250	5100
25	3720	6870	1720	1600	1200	5710	1380	1210	1300	1310	3130	1800
26	3000	9050	1630	1610	1180	3170	1350	1340	1310	1440	3050	1700
27	5190	5110	1550	1480	1100	2680	1350	1820	1410	1510	2400	1900
28	3170	5110	1560	1400	1050	2670	1310	1990	1580	1270	2000	1600
29	4950	780U	2150	1350		5500	1240	1620	1750	1160	1800	1700
30	7350	4340	1830	1260		1900	1160	1420	1670	1100	1600	1500
31	4500		1610	1520		1720		1350		1060	1500	
TOTAL	50850	157400	165030	70380	50940	50972	41140	48430	50290	40820	43078	67200
MEAN	1640	5247	5374	2270	1819	1644	1371	1562	1676	1317	1390	2740
MAX	7350	17800	20600	6970	3830	5710	1940	4020	2170	1510	3130	6100
MIN	585	1850	1550	1550	1050	840	1100	930	1300	1060	800	1200
CFSM	6.48	20.7	21.0	8.97		6.50	5.42	6.17	6.63	5.21	5.49	8.85
IN.	7.48	23.14	24.27	10.35		7.49	6.05	7.12	7.39	6.00	6.33	9.88
AC-FT	100900	315500	327300	139600	101000	101100	81600	96060	99750	80970	85450	133300
CAL YR	1977 10	TAL 8443		2313	MAX 20600				124.15	AC-FT	1675000	
WTR YR	1978 TO	TAL 8365	30 MEAN	5595	MAX 20600	MIN 585	CFSM	9.06 1	123.00	AC-FT	1659000	

TABLE 2.--Continued

12041200 HOH RIVER AT U.S. HIGHWAY 101, NEAR FORKS, WA

LOCATION. -- Lat 47°48'25", long 124°14'59", in NE'NNE's sec. 33, T. 27 N., R. 12 W., Jefferson County, Hydrologic Unit 17100101, on left bank 250 ft (76 m) downstream from U.S. Highway 101, 1.0 mi (1.6 km) downstream from Hell Roaring Creek, 11.5 mi (18.5 km) southeast of Forks, and at mile 15.4 (24.8 km).

DRAINAGE AREA. -- 253 m2 (655 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD, -- October 1960 to current year.

GAGE. -- Water-stage recorder. Datum of gage is 163.64 ft (49.877 m) National Geodetic Vertical Datum of 1929.

REMARKS. -- Water-discharge records good. No regulation or diversion above station.

AVERAGE DISCHARGE.--19 years, 2,505 ft³/s (70.94 m³/s), 134.46 in/yr (3,415 mm/yr), 1,815,000 acre-ft/yr (2,240 hm³/yr).

EXTREMES FOR PERIOD OF RECORD. -- Maximum discharge, 46,000 ft³/s (1,300 m³/s) Jan. 15, 1961, gage height, 17.74 ft (5.407 m); minimum, 396 ft³/s (11.2 m³/s) Nov. 4, 1974; minimum gage height, 2.40 ft (0.732 m) Sept. 27, 1961.

EXTREMES FOR CURRENT YEAR. -- Peak discharges above base of 16,000 ft³/s (453 m³/s) and maximum (*):

		Discha	rge	Gage height			
Date	Time	(ft ³ /s)	(m³/s)	(ft)	(m)		
Mar. 4	2100	*16.500	467	*11.15	1.100		

Minimum discharge, 680 ft³/s (19.3 m³/s) Feb. 2.

		DISCH	ARGE. IN	CUBIC FEET		OND, WATER		TOBER 1978	TO SEPT	EMBER 1979		
DAY	ост	NOV	DEC	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP
1	1390	724	1780	1020	704	2750	958	1520	1310	1660	1140	967
2	1240	780	1450	986	686	2310	1000	1440	1680	1240	1060	2030
3	1160	1170	1770	946	710	2090	958	1400	1850	1020	967	2950
4	1140	5350	1970	898	801	7620	1060	2010	1820	985	892	2250
5	1040	2060	1560	858	2010	10100	1090	3250	2060	1070	940	2640
6	1020	1590	1370	808	3780	8800	1090	3520	1920	1070	876	1690
7	1030	2750	1250	759	3700	6970	1040	2750	1450	1110	804	1540
8	1050	4210	1170	731	3170	4670	1140	2140	1300	2730	868	4170
4	1120	2300	1340	717	4830	3500	1270	1790	1320	2290	839	5190
10	1380	1820	1480	978	2980	2910	1530	1580	1430	3810	932	2540
11	1410	1550	3070	1020	2710	2670	1130	1430	1550	3540	900	1720
12	1090	1380	2060	986	3910	2430	1760	1370	1500	2610	908	1380
13	978	1250	1670	994	8170	2170	4280	1400	1330	1890	949	1260
1 4	986	1150	2380	848	4230	2060	2850	1520	1180	1550	994	1270
15	978	1100	2090	866	2880	2400	2130	1580	1110	1510	985	1300
16	986	1680	2300	815	2390	2090	1730	1590	1140	1650	967	1170
17	930	1780	2250	787	4090	1790	1610	1540	1150	1810	967	1030
18	906	1500	1950	766	4300	1620	2000	1430	1090	1930	967	1070
19	890	1430	1630	922	3090	1480	1750	1440	1130	1890	1050	1090
50	954	1260	1530	2000	2430	1370	1520	1430	1100	1840	949	1140
21	858	1150	1470	1950	2050	1320	1380	1520	1070	1660	967	994
22	766	1080	1940	1410	1780	1260	1310	1660	1040	1350	1080	832
23	829	1020	2030	1250	1620	1240	1300	1920	1020	1210	1030	804
24	1440	994	2890	1150	2420	1240	1270	1810	1060	1240	B60	790
25	1040	986	2130	1030	13300	1200	1250	1720	1200	1120	832	925
26	840	930	1770	978	7700	1140	1250	2050	1360	1200	853	900
27	822	970	1570	465	5080	1080	1370	2030	1400	1330	884	924
28	801	1430	1390	690	3620	1030	1510	1610	1290	1120	916	1130
29	470	1190	1250	836		1030	1480	1310	1350	1050	940	960
30	850	1750	1160	801		1040	1510	1170	1400	1130	839	908
31	173		1090	731		985		1150		1230	797	
TOTAL	31717	48334	54760	30743	99641	H4365	45226	54080	40610	50845	28952	47364
MEAN	1023	1611	1766	.992	3559	2721	1508	1745	1354	1640	934	1579
MAX	1440	5350	3070	2000	13300	10100	4280	3520	2060	3810	1140	5190
MIN	766	724	1090	717	680	985	958	1150	1020	985	797	790
CFSM	4.04	6.37	6.98	3,92	14.1	16.8	5.96	6.90	5.35	6.48	3.69	6.24
IN.	4.66	7.11	8.05	4,52	14.65	12.40	6.65	7.95	5.97	7.48	4.26	6.96
AC-FT	62910	95470	108600	60980	197600	167300	89710	107300	80550	100900	57430	93950
C	1070 707								07.04	4C ET 1	104000	

CAL YH 1978 TUTAL 598061 MEAN 1639 MAX 6970 MIN 724 CFSM 6.68 IN 87.94 AC-FT 1186000 WIN YH 1979 TOTAL 616637 MEAN 1689 MAX 13300 MIN 686 CFSM 6.68 IN 90.67 AC-FT 1223000

TABLE 2.--Continued

12041200 HOH RIVER AT U.S. HIGHWAY 101, NEAR FORKS, WA

LOCATION.--Lat 47°48'25", long 124°14'59", in NEWNEW sec. 33, T.27 N., R.12 W., Jefferson County, Hydrologic Unit 17100101, on left bank 250 ft (76 m) downstream from U.S. Highway 101, 1.0 mi (1.6 km) downstream from Hell Roaring Creek, 11.5 mi (18.5 km) southeast of Forks, and at mile 15.4 (24.8 km).

DRAINAGE AREA .-- 253 mi 2 (655 km2).

WATER-DISCHARGE RECORDS

PERIOD OF RECORD. -- October 1960 to current year.

GAGE.--Water-stage recorder. Datum of gage is 163.64 ft (49.877 m) National Geodetic Vertical Datum of 1929.

REMARKS.--Water-discharge records good except those for period of no gage-height record, Aug. 16 to Sept. 30, which are poor. No regulation or diversion above station.

DISCHARGE, IN CUBIC FEET PER SECOND. WATER YEAR OCTOBER 1979 TO SEPTEMBER 1980

AVERAGE DISCHARGE.--20 years, 2,515 ft³/s (71.22 m³/s), 134.99 in/yr (3,429 mm/yr), 1,822,000 acre-ft/yr (2,250 hm³/yr).

EXTREMES FOR PERIOD OF RECORD.--Maximum discharge, $51,600~\rm{ft}^3/s$ (1,460 m³/s) Dec. 17, 1979, gage height, 19.08 ft (5,816 m) from rating curve extended above $30,100~\rm{ft}^3/s$ (852 m³/s) on basis of slope-area measurement at gage height 17.74 (5.407 m); minimum, 396 ft³/s (11.2 m³/s) Nov. 4, 1974; minimum gage height, 2.40 ft (0.732 m) Sept. 27, 1961.

EXTREMES FOR CURRENT YEAR.--Peak discharges above base of 16,000 $\mathrm{ft^3/s}$ (453 $\mathrm{m^3/s}$) and maximum (+):

				harge	Gage h	eight
Date		Time	(ft ³ /s)	(m ³ /s)	(ft)	(m)
December	4	0600	32,300	915	15.12	4.609
December	14	2000	40,600	1,150	16.89	5.148
December	17	2000	*51,600	1,460	*19.08	5.816
January	12	1300	20,200	572	11.82	3.603
Pebruary	16	2100	26,800	759	13.60	4.145

Minimum discharge, 618 ft 3 /s (17.5 m 3 /s) Oct. 16, 18, 21, 22.

					ME	AN VALUES	5		-			
DAY	OCT	NOV	OEC	JAN	FEB	MAR	APR	MAY	NUL	JUL	AUG	SEP
1	818	1820	1200	4250	3080	5120	1520	1680	1860	1570	1190	3000
5	846	1610	3320	3870	8190	3890	1420	1830	1790	1640	1180	4000
3	811	1790	3470	3250	6680	3370	1360	1730	1530	2870	1120	2600
4	892	1690	17000	2610	4310	2900	1360	1650	1400	2800	1080	1900
5	755	1510	5210	5550	3300	2500	1800	1940	1330	1900	1000	1500
6	748	1300	3950	1970	5080	2100	2370	5050	1360	1630	918	2000
7	804	1170	3270	1790	3850	1800	1950	1750	1420	1690	945	2500
8	797	1080	5690	1700	2900	1600	1760	1600	1790	1730	981	5500
9	825	1000	4430	1600	2450	1500	4130	1590	5350	1770	1060	5000
10	860	949	4100	1480	2110	2500	3210	1510	2050	1730	1090	1900
11	734	908	3000	1590	1870	3300	2400	1480	1860	1740	1190	1600
12	690	868	3380	12800	1690	2800	2080	1640	1780	1570	1550	1500
13	678	839	11700	6110	1550	3900	5550	1550	1730	1510	1210	1400
14	642	804	37700	3750	1430	3100	3150	1510	1950	1550	1140	1300
15	660	783	18800	3440	1330	2700	4450	1416	2040	1520	990	1200
16	654	839	8320	3070	1280	2300	2890	1290	2120	1510	900	1100
17	714	1180	35500	2590	1300	3900	2560	1180	1920	1430	950	1050
18	678	1150	24500	2240	3320	3400	3070	1250	1870	1450	1000	1000
19	825	1070	17000	1990	4490	3000	5930	1380	1820	1470	900	2000
20	790	916	11400	1820	2760	3100	5000	2430	1900	1500	840	3500
21	648	853	9440	1690	2120	2800	3300	2980	1830	1720	800	2800
5.5	1140	1760	6400	1630	1790	2500	2670	2180	1780	1600	780	2400
23	2490	2410	4810	1650	1580	2300	2380	1780	1650	1500	780	2100
24	1890	1760	4510	1600	1490	2100	5550	1510	1630	1410	770	1900
25	8470	1610	4730	1510	1630	1900	5050	1390	1830	1380	760	1700
26	12000	1360	4630	1390	16600	1890	1880	1360	1590	1390	800	1600
27	8620	1140	3730	1280	23300	1860	1880	1400	1480	1430	1000	1500
28	5130	1040	3080	1500	13200	1860	2060	1490	1490	1430	940	1800
29	3580	985	2650	1150	7880	1990	2030	1460	1450	1310	880	2500
30	2700	1180	2450	1100		1790	1750	1550	1470	1200	860	3500
31	2190		3350	1170		1640		1700		1200	1500	
TOTAL	64079	37374	269720	79510	132560	81410	76820	51220	52040	50150	30774	60950
MEAN	2067	1246	8701	2565	4571	2626	2561	1652	1735	1618	993	5035
MAX	12000	2410	37700	15800	23300	5120	5930	2980	2320	2870	1500	4000
MIN	642	783	1500	1100	1280	1500	1360	1180	1330	1200	760	1000
CFSM	8.17	4.93	34.4	10.1	18.1	10.4	10.1	6.53	6.86	6.40	3.93	8.03
IN.	9.42	5.50	39.66	11.69	19.49	11.97	11.30	7.53	7.65	7.37	4.52	8.96
AC-FT	127100	74130	535000	157700	565300	161500	152400	101600	103200	99470	61040	120900

MAX 37700 MAX 37700

MIN 642 CFSM 9.24 IN 125.42 AC-FT 1692000 MIN 642 CFSM 10.7 IN 145.07 AC-FT 1957000

TABLE 3.--Water-quality sampling sites in the Hoh River basin, Washington

Site No. (see figs. l and 2)	Site descri (and USGS station No	River mile on Hoh River at tributary mouth	Drainage area, if calculated (mi ²)	
1	Hoh R at mile 30.0	(12040910)		179
2	Hoh R at mile 28.4			
3		(12040940)	27.6	
4		(12040960)	27.1	9.63
5		(12040965)	26.9	
6	•	(12040985	26.6	
7	•	(12040990)	26.5	
8	Hoh R at mile 25.8			208
9	Hoh R at mile 24.0			
10	Hoh R at mile 20.0			
11		(12041110)	19.8	
12		(12041120)	18.5	
13	Hoh R at mile 18.0			
14		(12041140)	17.8	
15		(12041170)	17.7	11.8
16	Hoh R at mile 15.4			253
17	Hoh R at mile 12.0			
18		(12041209)	11.7	
19	Hoh R at mile 8.9			
20	Hoh R at mile 6.7			
21		(12041217)	6.5	8.35
22		(12041220)	5.0	
23	Hoh R at mile 4.3			288
24	Hoh R at mile 2.3	•		
25	Chalaat Cr at	•		
		(12041230)	. 9	
26	Chalaat Cr at	•		
	community center	(12041234)	. 9	. 94
27	Hoh R at mile 0.6			
28	Hoh R at the Pacific	•		299

Note: "--" Not determined.

"River mile" or "mile" is distance upstream from mouth of Hoh River at the Pacific Ocean.

TABLE 4.--Water-quality data for the Hoh River at selected sites and for selected tributaries to the Hoh River, 1977-80

SITE 1, (12040910) - HOH RIVER AT RIVER MILE 30.0, NEAR FORKS, WA (LAT 47 48 56 LONG 124 01 50)

DATE	C D A Time (M	ICPO- AT	PER- B	ID- D	D SO SEN+ (P IS- C LVED SA	LVED RI ER- CH	AND. O- HAI EM- NF: AL. (MI AY A'	RD- NE SS NON G/L RON S (M	RD- SS+ CALCIUM CAR- DIS- ATE SOLVED G/L (MG/L CO3) AS CA)
SEP . 1976	1200	83	9.9	1	11.2	97	.8	40	11 14
				-			•		
DATE SEP •		SODIUM. DIS- SOLVED (MG/L AS MA)	SOD I UM PERCENT	SOOIUM AD- SORP- TION RATIO	POTAS- SIUM. OIS- SOLVED (MG/L AS K)	ALKA- LINITY (M8/L AS CACO3)	SULFATE OTS- SOLVED (MG/L AS SO4)	CHLO- RIDE. DIS- SOLVED (MG/L AS CL)	SILICA. DIS- SOLVED (MG/L AS SIO2)
DATE	SOLIDS: SUM OF CONSTITUENTS: DIS- SOLVED (MG/L)	SOLIDS. DIS- SDLVED (TONS) PER	NITRO~ GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN- AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRD- GEN;AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN. TOTAL (MG/L AS N)	NITRO- GEN- TOTAL (MG/L AS NO3)	PHOS- PHORUS, TOTAL (MG/L AS P)
SEP •		.07	.05	.02	.06	.08	.13	.60	.00

TABLE 4.--Continued

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	W.A.	STREAL	SPE CIF 4- CON	- 10					OXYGEN. OIS- SOLVED	OXYGEN DEMAND. BIO-		
DATE	TIME	FLOW- INSTAI TANEOU (CFS)	N- ANC	E RO-	A1	PER- B	ID-	YGEN• DIS= OLVED MG/L)	(PER- CENT SATUR- ATION)	CHEM- ICAL, 5 DAY (MG/L)		
SITE 2, (12040930) - HOM RIVER AT MILE 28.4 NR FORKS, WASH (LAT 47 48 37 LONG 124 03 33)												
SEP • 197	A 1255		· -	82		8.7	1	10.1	86			
SITE 3, (12040940) - CANYON CREEK AT MOUTH NR FORKS. WASH (LAT 47 48 44 LONG 124 04 12)												
SEP + 1976	8 1445	E3.0)	75		11.0	1	10.2	93	.3		
SITE 4, (12040960) - OWL CHEEK AT MOUTH NR FORKS, WASH (LAT 47 48 17 LONG 124 04 39)												
SEP + 1976	8 1530	E 25		80		9.8	0	11.1	97	.3		
SITE 5, (1204096	5)- SPF	RUCE CRE	EK AT MO	UTH NR FO	RKS, WASH	(LAT 47	48 19	LONG 124	04 48)		
SEP , 1970	8 1545	E2.4	•	78		14.8	0	11.7	114	.6		
SITE 6,	(120409	185) - MA	APLE CRE	EK AT MO	UTH NR FO	RKS, WASH	(LAT 47	48 14	LONG 124	05 17)		
SEP , 1976	1600	E100		60		9.6	0	10.8	97	• •		
DATI	F0 FE 0. UM (C0	LI- RM, CAL, 7 N -MF	NITRO- GEN+ IO2+NO3 TOTAL (MG/L AS N)	NITPO- GEN: AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	HONIA +	NITRO	- NIT GE TOT (MG AS N	N. PHO! AL TO'	DS- RUS+ FAL 5/L P)		
;	1204093	0 - HOH	RIVER .	AT MILE	28.4 NR F	ORKS+ WAS	H (LAT 4	7 48 37	LONG 12	6 03 33)		
SEP	1978		.06	.07	.14	.21	•5.	7 1	.2	.01		
12040940 - CANYON CHEEK AT MOUTH NR FORKS, WASH (LAT 47 48 44 LONG 124 04 12)												
	1204074	0 - CAN	IYON CREI	EK AT MO	UTH NR FO	RKS: WASH	CLAT 47	48 44	LONG 124	04 12)		
SEP .	. 1978	0 - CAN	.32	.02					LONG 124	.01		
	. 1978		.32	•02	.00		.3	• 1	.5	•01		
19.	1978 12040		.32	•02	.00	.02	.34	4 1 48 17 L	.5 ONG 124 (•01		
SEP . 19	, 1978 12040 , 1978	 960 - 0	.32 OWL CREE!	.02 K AT MOU	.00 TH NR FOR	.02	.30 (LAT 47 -	4 1 48 17 L 2 1	.5 ONG 124 (.01 04 39) .01		
SEP . 19	. 1978 12040 , 1978 	 960 - 0 5 - SPR	.32 OWL CREE! .16	.02 K AT MOU	.00 TH NR FOR .04 UTH NR FO	.02 KS, WASH	.34 (LAT 47 -	4 1 1 48 17 L 2 1 48 19	.5 ONG 124 (.0 LONG 124	.01 04 39) .01		
SEP 19.	12040 12040 1978 1204096	 960 - 0 5 - SPR 85 - MA	.32 .16 .UCE CREI	.02 .02 .02 EK AT MO	.00 TH NR FOR .04 UTH NR FO	.02 KS. WASH .06 RKS. WASH	.2: (LAT 47	4 1 48 17 L 2 1 48 19	.5 ONG 124 (.0 LONG 124	.01 04 39) .01 04 48)		

TABLE 4.--Continued

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

T I I	STREAM- FLDW- INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE	PH (UNITS)	TEMPER ATURE	TUR- 8- 810- 114	OXYGEN DIS-	OXYGEN DIS- SOLVE (PER- CENT	DEMAND. D 810- CHEM- ICAL 5 DAY
SITE 7, (120	*0990) - DISM	AL CREEK A	AT MOUTH	NH FORKS	S. WASH (L	AT 47 48	SI FONG 1	24 05 25)
SEP • 1978 19 16	?5 E2.6	90	. .	- 12.	. 0	0 9.	1 8	4 .3
SITE 9, (1204104	FO) - HDH KIV	ER AT RIVE	FR MILE 2	24.0 NR F	FORKS. WAS	SH (LAT 47	48 44 LD	NG 124 07 28)
SEP • 1978 19 170		78		. 11,	. 4	? 10.	6 9	6
DATE	FECAL+ 0.7 NO UM-MF T (CDLS./ (GEN+ G 2+NO3 AMA OTAL TO MG/L (M	SEN. MONIA OF STAL MG/L	GEN.	NITRO- GEN+AM- HONIA + DRGANIC TOTAL (MG/L AS N)	GEN. TOTAL (MG/L	GEN. P TOTAL (MG/L	PHOS- Horus. Total (Mg/L As P)
120	10490 - DISM	AL CREEK A	AT MOUTH	NR FORKS	S. WASH (L	AT 47 48	21 LDNG 1	24 05 25)
SEP + 19	978	.19	.03	.00	.03	•55	1.0	.01
1204104	+0 - HOH BIV	ER AT RIVE	ER MILE A	24.0 NR F	FORKS+ WAS	SH (LAT 47	48 44 LO	NG 124 07 28)
SEP • 14	978	.07	•02	.00	.02	.09	.40	
SITE 10, (12041100) - H	OH RIVER AT SPE- CIFIC CON- DUCT-	RIVER MILI		NEAR FOR	KS, WASH (DXYGEN• DIS- SDLVED (PER-	(Lat 47 48 HARD- NESS	HARD- NESS+ NONCAR-	124 07 28) CALCIUM DIS-
TIME DATE	ANCE (MICRO-	TEMPER- ATURE (DEG C)	910- 117 (JTU)	DIS- SDLVED (MG/L)	CENT SATUR- ATION)	(MG/L AS CACD3)	BONATE (MG/L CACD3)	SDLVED (MG/L AS CA)
SEP , 1978 19 1900	78	11.4	2	10.4	95	35	7	12
MAGNE- SIUM DIS- SOLVEE (MG/L DATE AS MG/	SODIUM+ DIS- SOLVED (MG/L		SODIUM AD- SORP- TION RATIO	PDTAS- SIUM. DIS- SOLVEO (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLD- RIDE+ DIS- SOLVED (MG/L AS CL)	SILICA. DIS- SDLVED (MG/L AS SID2)
SEP • 1978 19 1.2	2.0	11	•1	•5	28	10	1.5	5.3
SOLIDS: SUM OF CONSTI- TUENTS: DIS- SOLVEI DATE (MG/L)	SOLIUS. DIS- SOLVED (TONS) PER	GEN: ND2:NO3 A Total Img/L	NITRD- GEN: MMDNIA TDTAL (MG/L AS N)	NITRO- GEN+ DRGANIC TOTAL IMG/L AS N)	NITRD- GEN;AM- MDNIA • DRGANIC TOTAL (MG/L AS N)	NITRD- GEN• TOTAL (MG/L AS N)	NITRO- GEN. TOTAL (MG/L AS NO3)	PMDS- PHDRUS. TOTAL (MG/L AS P)
SEP , 1978		.08	.03	.01	.04	•15	.50	.01

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

DATE	TIME	STREAM- FLOW. INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (UTU)	DXYGEN• DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVEO (PER- CENT SATUR- ATION)	OXYGEN DEMAND. BIO- CHEM- ICAL. 5 DAY (MG/L)
SITE 11, (1	2041110) - w ILLOUG	HBY CHEEK	AT MOUTH	NR FORKS	WASH (LAT 47 49	19 LONG 1	24 11 46)
SEP + 19	1940	E12	80		11.0	0	10.6	96	•3
SITE	12, (1204	1120) - ELM	CHEEK AT	MOUTH NR	FORKS. W.	ASH (LAT	47 48 56	LONG 124	12 54)
SEP + 19	78 0905	£3.8	67	6.1	11.1	0	7.9	72	•B
SITE 13	, (120411	30) - HOH R	IVER AT M	ILE 18.0	NR FORKS,	WASH (L	AT 47 48 4	3 LONG 12	4 13 29)
SFP , 19 20	78 0945		84	7.2	9.6	2	11.1	98	
SITE 14	1, (12041	140) - ALDE	R CREEK AT	HOUTH N	R FORKS. 1	ASH (LA	7 47 48 43	LONG 124	13 42)
5EP + 19 20	78 1000	€17	43	6.7	10.4	1	10.7	96	.9
SITE 15, (1204117	0) - wINFIE	LD CREEK A	HTUON T	NR FORKS+	WASH (LA	AT 47 48 3	6 LONG 12	4 13 50)
SEP , 19 20	78 1030	£15	35	6.9	9.8	1	10.2	90	.6
DAT	F0: FE: 0. UM: (C0)	CAL+ GE	AL TOTA	II GE VIA ORGA NL IDT 'L (MG	NIC DRGAL AL TOTAL CL (MG.	AM- A + NI' NIC GI AL TO' /L (MI	TRD- NIT EN• GE TAL TOT G/L (MG N) AS N	N. PHOR AL TOT /L (MG	US• AL /L
12	041110	- WILLOUGH	HBY CREEK	AT MOUTH	NR FORKS.	WASH (L	AT 47 49 1	9 LDNG 12	4 11 461
SEP 19.	. 1978		•16	.02	.01	.03	.19	.80	.01
	12041	150 - EFK	CREEK AT I	10UTH NR	FORKS. WA	SH (LAT	47 48 56 L	ONG 124 1	2 54)
SEP 20	. 1978	19	.48	.01	•02	.03	.51 2	3	.01
	1204113	0 - HOH R	VER AT MI	E 18.0 N	IR FORKS.	WASH (LA	T 47 48 43	LONG 124	13 29)
SEP 20.	1978	30	.10	.02	.00	.02	.12	.50	.01
	12041	140 - ALDE	R CREEK AT	MOUTH N	R FORKS+ W	ASH (LAT	47 48 43	LONG 124	13 42)
	• 1978 •••	25	.13	•02	.01	.03	.16	.70	.01
	12041170	- WINFIE	LO CREEK A	T MOUTH	NR FORKS+	WASH (LA	T 47 48 3	6 LONG 12	13 50)
	, 1978 •••	38	•11	•02	.06	.08	.19	.80	.01

HOH RIVER BASIN

SITE 16, (12041200) HOH RIVER AT U.S. HIGHWAY 101 NEAR FORKS, WA WATER QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-61, 1962-74, 1977 to current year.

PERIOD OF DAILY RECORD.--WATER TEMPERATURES: November 1970 to April 1971.

REMARKS. -- Records published as 12041000 July 1960 to September 1961.

WATER QUALITY DATA

DATE	TIME	STHEA FLOW INSTA TANEO (CFS	DUC' N- ANCI	IC - T- E P RQ-	ATU	ER- INU	AŤ- TU M- BI ALT IT	D- DI Y SOL	SDL En, (PE S- CE VEO SAT	S- FOR	M. AL. HARI NES: HF (MG: S./ AS	S NONCAF /L BONATE (MG/L	• R- E
NOV + 19													_
15 JAN + 19						7.2	10		1.7		12	30	8
25 Mar	1100					6.6	5		2.1		4		11
23 May	1430	1210		78	7.6	9.5	5	2 1	1.2		8	35	7
19 JUL	1500	1640		77	7.6 1	1.7	5	1	1.2		2	33	7
25 SEP	1000	1330		68	7.4 1	1.2	5	4 1	0.6		26	29	7
20 29	1125 1500					9.6 1.6	10		1.2 0.6	98 	27	38) 34	1 1 8
DA		CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVEO (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	50DIUM AD- SORP- TION RATIO	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BDNATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACD3)	CARBON DIDXIDE DIS- SOLVED (MG/L AS CO2)	SULFATE DIS- SOLVED (MG/L AS SO4)	
	, 19	77 10	1.1	1.9	12	•2	.2	27	0	22	2.7	7.1	
JAN	19		1.0	2.0	11	•2	•2	28	0	23	2.8	8.7	
MAR		12	1.1	1.5	9	•1	•2	34		28	1.4	8.0	
MAY		11	1.3	2.0	12	.2	••	32	0	26	1.3	9.2	
JUL		10	.9		9	•1	.1	26	0	21	1.7	8.2	
SEP	,			1.3	-								
	•••	13 12	1.3	2.3 1.9	12 11	•1	•5	31		27 25	.8	11 10	
DA	TE	CHLO- RIDE. DIS- SDLVED (MG/L AS CL)	SILICA+ DIS- SDLVED (MG/L AS SID2)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L)	SOLIDS, OIS- SOLVED (TONS PER AC-FT)	NITRO- GEN+ NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ AMMONIA TOTAL (MG/L AS N)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N)	NITRO- GEN+AM- MONIA + ORBANIC TOTAL (MG/L AS N)	NITRD- GEN+ Total (MG/L AS N)	NITRO- GEN• TDTAL (MG/L AS NO3)	PHDS- PHORUS: TOTAL (MG/L AS P)	
	19	77 2.8				.13	.16					.10	
JAN	. 19					.09	.03					.01	
MAR		2.5				.03	.02					.01	
MAY		2.1				.05	.02					.01	
JUL		.9				.02							
SEP							.06					.02	
	•••	1.8	5.5	51 	-07	.10	.02 .04	•05 - -	.07	-17	.80	.01 .03	
DA		PHDS- PMORUS, ORTHO, DIS- SOLVED (MG/L AS P)	PHOS- PHATE; ORTHO; DIS- SDLVEO (MG/L AS PO4)	ARSENIC DIS- SDLVED (UG/L AS AS)	CADMIUM D1S- SOLVED (UG/L AS CO)	CHRD- M1UM. DIS- SOLVED (UG/L AS CR)	COPPER+ DIS- SOLVED (U8/L AS CU)	LEAD, DIS- SOLVED (UG/L AS PR)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)	SILVER. DIS- SOLVED (UG/L AS A8)	ZINC+ DIS- SOLVED (UG/L AS ZN)	
NOV	• 19			_	-	_	_	_	-	_	_		
JAN	, 19		.00	1	1	0	2	2		0	0	40	
MAR		.00	.00	2	S	0	4	9	.0	0	1	20	
MAY		.00	.00	1	0	0	4	7		0	0	10	
JUL		.00	.00	0	1	10	4	2		0	0	10	
SEP		.00	.00	1	5	10	•	4	.0	0	0	<3	
20 29	•••	.01	.03	0	<1		14		.0	0	0	50	

SITE 16, (12041200) HOH RIVER AT U.S. HIGHWAY 101 NEAR FORKS, WA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-61, 1962-74, 1977 to current year.

PERIOD OF DAILY RECORD. --WATER TEMPERATURES: November 1970 to April 1971.

REMARKS.--Records published as 12041000 July 1960 to September 1961.

WATER QUALITY DATA

					WATER	QUALITY	DATA					
DATE	111	1	TREAM- FLOW+ NSTAN- ANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHDS)	PH (UNITS)	TEMPER- ATURE (DEG C)	INL COE	AT-	TUR- 910- 1TY (NTU)	OXYGEN. DIS- SOLVED (MG/L)	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	HARD- NESS (MG/L AS CACO3)
NOV + 1	978 110	00	1080	74	7.6	4.2		5	1.0	12.4	9	37
JAN • 1 17	979		752	82		4.6		5	.00	12.5	к2	35
MAR 20	140	0	1370	82	7.5	8.2	?	10	1.0	12.0	<1	34
MAY 15 JUL	080	0	1640	82	7.0	8.5	i	5	1.0	11.3	2	37
18 SEP	103	30	2000	70	7.3	11.0)	20	13	10.8	57	28
11	11:	30	1720	59	7.3	10.6	1	10	8.0	11.0	36	31
DATE	HARE NESS NONCA BONA! (MGA	S, C NR- IE 'L	ALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM• DIS- SOLVED (MG/L AS MG)	SODIUM. DIS- SOLVED (MG/L AS NA)	SODIUM PERCENT	SOF Ti Rat	D- IP- ON	POTAS- SIUM. DIS- SOLVED (MG/L AS K)	BICAR- BONATE (MG/L AS HCO3)	CAR- BONATE (MG/L AS CO3)	ALKA- LINITY (MG/L AS CACO3)
NOV • 1	978	10	13	1.1	3.4			.1	,	33	0	27
15 JAN + 1 17	979	9	12	1.1	2.0	10		.2	.1	31	0	25
MAR 20		,	12	1.0	2.8	14		.2	1.9	33	0	27
MAY 15		12	13	1.0	2.2	11		.2	.4	••		25
JUL 18		9	10	.7	1.2	8		.1	.4	23	0	19
SEP 11		8	11	.9	2.0	12	!	.2	.2			23
DA		CARBO DIOXIO DIS- SOLVE (MG/L	E SULF 015 0 SOL (MC	FATE R1 5- 01 .VED 50 5/L (M	DE• G S= NO2 LVED TO G/L (M	EN+ 6 +NO3 AMM TAL TO G/L (M	TRO- SEN+ SONIA STAL SG/L S N)	PHOS- PHORUS TOTAL (MG/L AS P)	DI SOLV	US• PH/ HO• OR1 S• 01 ED SOL /L (MG	TE. THO: ARSI IS- DI VED SDI G/L (UC	ENIC 15- LVED 3/L AS)
	, 197	78 1.	2	4.2	1.7	.14	.05	.01	•	.00	.00	0
JAN	197			11	2.2	.04	.00	.01		.00	.00	0
MAR		1.		8.6	2.0	.11	.01	.01		.02	.06	2
	•••	-	- 1	12	1.7	.10	.04	.03		.01	.03	0
	• • •	1.	8	8.3	1.0	.10	.02	.04	0	.00	.00	0
SEP 11	•••	-	- 1	12	1.6	.13	.01	.01	0	.04	.12	o
DA	:	IARIUM DIS- DLVED (UG/L AS BA	01 SOL (UC	41UM MI 15- UI LVED 50 5/L (U	S- DI LVED SO G/L (U	S- 0 LVED 50 G/L (U	(AD.)IS-)LVED G/L ; PB)	MERCUR TDTAL HECOV EHABL (UG/L AS HG	. NIU /- DI .E SOL . (UG	M, SILV S- D! VED SOL /L (UC	S- 0: VED 50:	NC+ 15- LYEO 3/L ZN)
	. 197		U	0	0	2	G	-	. 0	2	0	0
JAN	197			<1	0	2	٠ ن		· o '	0	1	< 3
MAR 05			0	0	0	44	0		0	0	Ú	+ 0
MAY 15	•••		0	1	0	0	o		.2	0	o	10
18 JUL	•••	1	0	<1	0	0	0		1	0	0	<3
SEP 11	•••	2	0	<1	10	3	0		, 0	0	0	8

SITE 16, (12041200) HOH RIVER AT U.S. HIGHWAY 101 NEAR FORKS, WA--Continued WATER-QUALITY RECORDS

PERIOD OF RECORD. -- Water years 1960-61, 1962-74, 1977 to June 1980 (discontinued).

PERIOD OF DAILY RECORD...
WATER TEMPERATURES: November 1970 to April 1971.

REMARKS.--Records published as 12041000 July 1960 to September 1961.

WATER QUALITY DATA OCTOBER 1979 TO JUNE 1980

c	DATE	TIME	STREAM- FLOW+ INSTAN- TAMEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- 8IO- 1TY (NTU)	OXYGEN. DIS- SOLVED (MG/L)	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	HARD- NESS (MG/L AS CACO3)
	ov , 1979 15	0845	783	86	7.3	4.4	5	.00	12.0	29	37
JA	N , 1980	1100	3100	63	6.7	5.4	10	15	11.6	3	32
MA	(H 26	0830	1820	12	7.2	5.8	10	2.0	11.5	11	29
MA	Y			78			5			2	37
•	01	1200	1730	78	7.1	8.6	5	3.0	11.6	2	37
		HAR NES NDNC BONA (MG	S. CALC AR- DIS- TE SOL	- DIS VED SOLV	M, SODIU - Dis- ED SOLVE	- E D	SOF TI	ID- SI IP- DI ION SOL	IUM, LIN IS- FII .VEO (M	KA- CARBO ITY DIDXIO ELD DIS- G/L SOLVE S (MG/L)	DE - ED
	DATE	CAC	03) AS	CA) AS M	G) AS N	A) SOD	UM	AS	K) CA	CD3) AS CO	2)
	NOV + 15		9 1	3 1	.1 2	2.4	12	•5	•5	28 2	. 2
	16	•	5 1	1 1	•0 Z	2.1	13	•5	•5	27 8.	. 6
	26	•	8 1	0	.9 2	2.1	14	•5	•5	21 2.	.1
	01	•	12 1:	3 1	• 0	2.0	11	•5	•5	25 3.	.2
	DATE	SULF OIS SOL (MG AS S	- DIS- VED SOL' /L (MG.	E• GEN - NO2•N VED TOTA VL (MG/	F GEN D3 AMMON L TOTA L (MG/	NIA AHMDI NIA AHMDI NL TDT/ 'L (MG/	HOPHOFILE TOTAL TO	RUS. PHO FAL TOT	PHDI	VED SOLVE	E,), = E0
	NOV .				, 43	,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	., ,,		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	15	. 1	1	1.7	17 .0	50 .	.06 .	010	.03	.000 .0	0
	16		7.1	2.3 .	13 .0	000 .	.00 .	.016	.03	.000 .0	00
	MAR 26	•	8.0	1.8 .	oa .0	000 .	.00 .	.010	.03	.000 .0	00
	MAY 01	•	9.4	1.4 .	02 .0	. 050	. 02	.010	.03	.010 .0	3
DATE	TIME	STREE FLOO INST TANEE (CF:	H. CON- AN- DUCT DUS ANCE	с ′ - Рн	TEMPE ATUR (DEG	E COBA	T- TU - 81 LT IT	D- DI Y SDL	S- (MG VED AS	S NONCAR	- ACIDITY (MG/L AS
JUN + 1'	980 0930	14	• 50	83 7.	.3 9	•0	5 2	•1 1	1.9	37 3	7 9.9
DATE	CALCIUM DIS- SOLVED (MG/L AS CA)	019	JM+ 50010 5- 015- /ED SOLVE /L (MG/	D L PEHCEN		- 510 - 515 N SOLV	M. LINI - FIE: ED (MG L AS	TY DIOX LD DI /L SOL (MG	IDE SULF	- DIS- VED SDLVE /L (MG/L	DIS- SOLVED D (MG/L AS
JUN - 1	980										
04	13	1	1•1 2	.0 1	0	•1	• 2	16	.0 1	6 2.	7 4.6
٥	RE: AT DI S	LIDS. SIDUE 180 EG. C DIS- OLVED MG/L)	SDLIDS+ SUM OF CDNST1- TUENTS+ DIS- SULVEU (MG/L)	OIS-	OLIDS. DIS- SOLVED ((TONS PER DAY)	NITHO- GEN+ NUZ+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN+ AMMONIA TOTAL (MG/L AS N)	NITRO- GEN+ AMMONIA DIS- SOLVED (MG/L AS N)	-ORTIN A • M30 AINOPHA LATCT JAPA	NITRO- GEN+ MMONIA DIS- SOLVED (HG/L S NM4)
	N . 1980	49	40	.07	192	.13	.05	•070	.060	.08	.08

SITE 16,(12041200) HOH RIVER AT U.S. HIGHWAY 101 NEAR FORKS, WA--Continued WATER QUALITY DATA OCTOBER 1979 TO JUNE 1980

	DATE	OH T	ITRO- GEN+ GANIC OTAL MG/L S N)	NITRO- GEN. OHGANIC DIS- SOLVED (MG/L AS N)	NITRO- GEN+AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN.NH4 • ORG. SUSP. TOTAL (MG/L AS N)	NITRO- GEN:AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN+ TOTAL (MG/L AS N)	NITRO- GEN+ TOTAL (MG/L AS NO3)	PHOS- PHORUS. TOTAL (MG/L AS P)	PHOS- PHORUS TOTAL (MG/L AS PO4)	PHOS- PHORUS: DIS- SOLVED (MG/L AS P)	
	JUN •	1980	.49	.43	.56	.07	.49	.69	3.1	.470	1.4	.010	
DA	TE	TIME	SOL	IS- DIS VED SOLV	;- D1 (ED SOL	S- DIS VED SOL	M. COPP - DIS VED SDL	- DI VED SOL /L (UG	S- REC VED ERA	AL NIU DV- DI BLE SOL	M. SILV S- DI VED SDL /L (UG	S- DIS- VED SOLVE /L (UG/L	E C
	• 1979	0845		0	5	<1	0	0	0	.1	0	0 1	10
JAN	, 1986	1100		0	4	3	0	0	1	.1	0	0 1	10
MAR		0830		0		<1	0	4	0	.0	0	0	a
MAY		1200		0	9	<1	0	3	2	.0	0	0	۲3
	DAT	Ε	TIME	ALUM- INUM+ TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM+ SUS- PENDED RECOY+ (UG/L AS AL)	ALUM- INUM. DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC SUS- PENOED TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	BARIUM, TOTAL RECDV— ERABLE (UG/L AS BA)	BARIUM. SUS- PENDEO RECOV- ERABLE (UG/L AS BA)	BARIUM. DIS- SOLVED (UG/L AS BA)	
	JUN -	, 1980 ••	0 930	480	340	90	1	0	1	0	•	20	
		. 198		BDRON. SUS- PENDEO RECOV- ERABLE (UG/L AS B)	BDRON* DIS- SDL VED (UG/L AS 8)	CADMIUM TOTAL RECOV- FRABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CHRO- MIUM. TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM. SUS- PENDED RECOV. (UG/L AS CR)	CHRO- MIUM. DIS- SDLVED (UG/L AS CR)	COBALT. TOTAL RECDV- ERABLE (UG/L AS CO)	COBALT. DIS- SOLVED (UG/L AS CO)	
	04.	CC	OPPER. TOTAL RECOV- ERABLE (UG/L	CDPPER. SUS- PENDED HECOV- ERABLE	COPPER. DIS- SDLVED	IHDN. TOTAL RECOV- ERABLE (UG/L	IRON. SUS- PENDED HECOV- ERABLE (UG/L	IRDN. DIS- SOLVED	LEAD. TOTAL RECDV- ERABLE (UG/L	LEAD. SUS- PENDED RECDV- ERABLE	LEAD, DIS- SOLVED	LITHIUM TOTAL RECOV- ERABLE (UG/L	
	DAT		AS CU)	AS CU)	AS CU)	AS FE)	AS FE)	AS FE)	AS PB)	AS PB)	AS PB)	AS LI)	
	04.	1980	25	17	8	520	500	20	35	30	5	0	
	DAT		THIUM SUS- PENDED RECOV- ERABLE (UG/L AS LI)	LITHIUM DIS- SDLVED (UG/L AS LI)	MANGA- NESE+ TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE+ SUS- PENDED RECDV. (UG/L AS MN)	MANGA- NESE+ DIS- SDLVED (UG/L AS MN)	MERCURY TDTAL RECOV- ERABLE (UG/L AS MG)	MERCURY SUS- PENDED RECDV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	NICKEL+ TOTAL RECDV- ERABLE (UG/L AS NI)	NICKEL. SUS- PENDED RECOV- ERABLE (UG/L AS NI)	
	JUN .	1980)										
	04	N1	O ICKEL+ SOLVED	SELE- NIUM. TDTAL	SELE- NIUM. SUS- PENDED TOTAL	SELE- NIUM. DIS- SOLVED	SILVER. TOTAL. HECOV- ERABLE	SILVER. SUS- PENDED RECDV- ERABLE	SILVER. DIS- SOLVED	ZINC: TOTAL RECOV- ERABLE	ZINC. SUS- PENDED RECOV- ERABLE	ZINC+ DIS- SOLVED	
	DATE		(UG/L IS NI)	AS SE)	(UG/L AS SE)	(UG/L AS SE)	(UG/L AS AG)	(UG/L A5 AG)	AS AG)	(UG/L AS ZN)	(UG/L AS ZN)	(UG/L AS ZN)	
	JUN .	1980) 6	0	0	0	0	0	0	40	30	10	

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

	WATER QUALITY	DAIA, WAIE	C LEAK ULIUB	EK 1977 10	SEFIEMBER 19	
SITE 17, (12041206)	- HOH RIVER AT R	IVER MILE 12	2.0, NEAR FO	RKS, WASH (LAT 47 47 12	LONG 124 16 47)
	SPE- CIFIC CON- DUCT-		TUR~ OXY	OXYGE DIS Solv 'Gen, (Per	FORM+	HARD- HARD- NESS: NESS NDNCAR-
TIME	ANCE PH	TEMPER-		IS- CEN		(MG/L BONATE AS (MG/L
DATE	MHDS) (UNITS)	(DEG C)		G/L) ATIO		CACO3) CACO3)
SEP • 1978 20 1235	81 7.0	9.8	5	11.0	97 34	37 11
CALCIUM DIS-	MAGNE- SIUM+ SODIUM+ DIS- DIS-		AD~ S	DTAS- SIUM+ ALKA DIS- LINIT DLVED (MG/	Y DIS-	CHLD- SILICA+ RIDE+ DIS- DIS- SDLVED SOLVED (MG/L
SOLVED (MG/L	SOLVED SOLVED	SOOTUM	RATIO (M	IG/L AS	(MG/L	(MG/L AS
DATE AS CA)	AS MG) AS NA)	PERCENT	A:	K) CACO	3) AS S04)	AS CL) S102)
SEP • 1978 20 13	1.2 2.2	11	•5	•5	26 11	1.8 5.5
SOLII SUM (CONS: TUEN: DI: SOLI DATE (MG.	OF SOLIDS+ NI 11- DIS- G 15+ SOLVED NO2 5- (TONS TO VED PER (M	TRO- NITR EN+ GEN +NO3 AMMON TAL TOTAL G/L (MG/ N) AS N	FEN+ IA ORGANIC TOTAL (MG/L	NITRD- GEN+AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- NIT GEN• GE TOTAL TOT (MG/L (MG AS N) AS N	N+ PHORUS+ AL TOTAL /L (MG/L
SEP • 1978 20	51 .07	.10 .	02 .02	.04	.14	.60 .01
DATE	STREAM- FLOW- INSTAN- TIME TANEOUS (CFS)	MICRO-	PH TEMPE ATUR (ITS) (DEG	E ITY	OXYGEN. (DIS- SOLVED S	OFFICE OF STATE OF ST
SITE 18, (12041209) - ŁOST (CREEK AT MOU	TH NR FORKS	. WASH (LAT	47 47 01 LON	IG 124 17 02)
SEP • 1978 20•••	1315 6.8	36	4.6 10	.6 2	10.4	94 .7
20	1315 6.6	36	6.6 10	•0 6	10.4	94 .7
	2041212) - HOH RIV	ER AT MILE	B.9 NR FORK	S+ WASH (LA	T 47 45 45 LC	ING 124 18 51)
SEP • 1978 20	1415	78	6.7 9	.9 2	11.2	99
DATE	COLI- FDRM, NITI FECAL, GE! 0.7 ND2+! UM-MF TOTI (COL5./ (MG/	FF GEN- ND3 AMMONIA L TOTAL /L (MG/L	GEN.	ORGANIC TOTAL T (MG/L (ITRO- NITRO GEN: GEN: OTAL TOTAL MG/L (MG/L S N) AS NO	PHDRUS. TOTAL (MG/L
	12041209 - LOST C	REEK AT HOU	TH NR FORKS	WASH (LAT	47 47 01 LON	G 124 17 02)
SEP .		05 .01	.07	.08	.13 .6	0 .02
13	2041212 - HOH RIV	ER AT HILE	8.9 NR FORKS	S+ WASH (LAT	r 47 45 45 LO	NG 124 18 51)
SEP , 20		10 .02	•02	.04	.14 .6	0 .01

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

SITE 20, (12041214) - HOH RIVER AT RIVER MILE 6.7, NEAR FORKS, WASH (LAT 47 45 07 LONG 124 20 05)

SITE 20, (12041214	- HOH RI	VER AT RI	VER MILE	6.7, NEAR	FORKS, V	ASH (LAT	47 45 07 L	ONG 124 2	0 05)
OATE	TIME	SPE- CIFIC CON- DUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- 910- 1TY (JTU)	OXYGEN+ OIS- SOLVEO (MG/L)	OXYGEN, DIS- SOLVEO (PEP- CENT SATUR- ATION)	COLI- FORM. FECAL. 0.7 UM-HF (COLS./ 100 ML)		HARO- NESS+ NONCAR- BONATE (MG/L CACO3)
SEP • 197 20	78 1505	79	7.0	10.2	3	10.9	97	18	35	8
DATE	CALCIUM DIS- SOLVEO (MG/L AS CA)	MAGNE- SIUM, OIS- SOLVED (MG/L AS MG)	SODIUM+ DIS- SOLVED (MG/L AS NA)	SOOIUM PERCENT	SOOIUM AO- SORP- TION RATIO	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY (MG/L AS CACO3)	SULFATE OIS- SOLVEO (MG/L AS SO4)	CHLO- RIOE+ DIS- SOLVEO (MG/L AS CL)	SILICA+ DIS- SOLVED (MG/L AS SIO2)
SEP • 197 20	15	1.2	2.1	12	.2	.2	27	10	1.9	5.5
DATE		OF SOLI 71- DI 75, SOL 5- (TO VEO PE	S- GE VED NO2+ NS TOT R (MG	AL TOTA	N. GE NIA ORGA NL TOT /L (MG	RO- GEN- N- MONI NIC ORGA AL TOT /L (MG	A · NII NIC GE AL TOI	5/L (MG/	• PHORU L TOTAL L (MG/	5•
SEP .	1978	49	.07	.10	.02	.04	.06	.16 .	70 .	01
	ATE	IP TIME TA	TREAM- (FLOW- (F		NITS) (BID- ITY (JTU)	SOLVEO SA	DIS- DEM DLVED BI PER- CH CENT IC ATUR- 5 C (ION) (MG	/L)
SE 2	P • 1978	1905		30	6.6	12.0	1	9.7	90	.8
SITE	22, (1204)	(220) - BR	ADEN CREE	K AT HWY 1	01 BRIDG	E NR FORK	S. WASH (LAT 47 44	22 LDNG I	24 20 51)
	P • 1970	1855		26	6.4	11.4	7	9.7	88	.5
	OATE	COLI- FORM FECAL 0.7 UM-MF (COLS:	NITRI OFNI NOZONI TOTAL	GEN. GEN. GEN. GEN. GEN. GEN. GEN.	GENO A ORGANI TOTAL (MG/L	MONIA IC ORGAN TOTA (MG/	M- + NITR IC GEN L TOTA L (MG/	· GEN· L TDTAL L (MG/L	PHDRUS: TOTAL (MG/L	
	1204	1217 - NO	LAN CREEK	AT HWY 1	OI BRIDBE	NR FORKS	WASH (AT 47 45 0	7 LDNG 12	4 19 16)
	SEP 20.	• 1978	40	,02 .	03 .	.05 .	.08 .	.10 .4	0 .0	2
	1204	1220 - BF	RADEN CREI	EK AT HWY	101 BRIDG	E NR FOR	KS+ WASH	(LAT 47 44	22 LONG 1	24 20 51)
	SEP 20.	, 1978 ••	11 .	.08 .	01 .	.11	.12	.20 .9	0.0	2

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

SITE 23, (12041223)	- HOH RIV	ER AT RIV	ER MILE 4.	3, NEAR F	ORKS, WAS	H (LAT 47	7 44 10 LC)NG 124 2	1 59)
OATE	TIME	SPE- CIFIC CON- OUCT- ANCE (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	TUR- #10- 1TY (JTU)	OXYGEN+ DIS- SOLVEO (MG/L)	OXYGEN+ DIS- SOLVEO (PER- CENT SATUP- ATION)	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	HARO- NESS (MG/L AS CACO3)	HARO- NESS: NONCAR- BDNATE (MG/L CACO3)
SEP . 1					_					
20	1635	78	7.2	10.8	3	10.6	97	13	37	12
	CALCIUM	MAGNE- Sium.	5001UM+		5001UM	POTAS+ SIUM+	ALKA-	SULFATE	CHLO-	SILICA.
	DIS-	DIS-	015-		SORP-		LINITY	DIS-	015-	SOLVED
	SOLVED	SOLVED	SOLVED		TION	SOLVEO	(MG/L	SOLVEO	SOLVED	(MG/L
DATE	(MG/L AS CA)	(MG/L AS MG)	(MG/L AS NA)	SODIUM PERCENT	RATIO	(MG/L AS K)	AS CACO3)	(MG/L AS SO4)	(MG/L AS CL)	AS (2012
				• • • • •						
SEP , 19	978 13	1.2	2.3	12	•5	.2	25	10	2.0	5.6
	13	1		**	• •	••			2.0	
	SOL I					NITR				
	SUM (RO- NITE	10- PHO	·S-
	TUEN1	SOL	VED NO2+	ADMMA CON	IA ORGAN	IC ORGAN	IC GEN	N. GEN	N. PHOR	:US•
	019						L TOTA			
OA'	SOL' TE (MG)									
***	• 1978									
	• 19/4	49	.07	.11 .	.02	05 .	07 .	.18 .	.80	.01
				E-						YGEN
		STR		IN-						MANO.
		FL	DW. Du	CT-						HEM-
				CRO-						CAL+ Day
D	ATE '					5 C) (J1				3/L)
	SITE 24, (12	041226) -	HOH RIVER	AT MILE	2.3 NR FO	RKS+ WASH	ILAT 47	44 50 LON	G 124 23	46)
	P • 1978									
2	20 1	725		80	7.0	11.2	3	11.1	100	
		CO1 1-				N.T.T.D.O				
		COLI- FORM•	NITRO-	NITRO-	NITRO-	NITRD- GEN+AM-				
		FECAL .		GEN.	GEN.	MONIA +	NITRO-			
		0.7 UM-MF	NO2+ND3	AMMONIA TOTAL	ORGANIC TOTAL	ORGANIC TOTAL	GEN. Total	GEN. Total	PHORUS	•
		(COLS./	MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	
	DATE	100 ML)	(N ZA	AS N)	AS NI	AS N)	AS NI	AS NO3)	AS PI	
	SEP ,									
	20		.11	.03	.00	.03	.14	•60	.01	l

TABLE 4.--Continued

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

SITE 27, (12041250) - HOH RIVER AT RIVER MILE 0.6, NEAR FORKS, WASH (LAT 47 44 58 LONG 124 25 43)

DATE	TIME	SPE- CIFIC CON- DUCT- ANCF (MICRO- MHOS)	PH (UNITS)	TEMPER- ATURE (DEG C)	7UR- -018 YTI (JTU)	OXYGEN• DIS- SOLVED (MG/L)	OXYGEN. DIS- SOLVED (PER- CENT SATUP- ATION)	OXYGEN DEMAND. RID- CHEM- ICAL. 5 DAY (MG/L)	COLI- FORM. FECAL. 0.7 UM-MF (COLS./ 100 ML)	HARD- NFSS (MG/L AS CACO3)
SEP +	1978									
20	1805	83	۶.۲	11.2	3	10.9	98	.4	15	37
	HARD-		MAGNE -	50571114		SDDIUM	POTAS-		SULFATE	RIDE.
	NESS.	CALCIUM UIS-	SIUM. DIS-	SODIUM. DIS-		AU- SORP-	SIUM. DIS-	ALKA- LINITY	DIS-	DIS-
	BONATE	SOLVED	SOLVED	SOLVED		TIDN	SOLVED	(MG/L	SOLVED	SOLVED
	(MG/L	(MG/L	(MG/L	(MG/L	SODIUM	RATID	(MG/L	AS	(MG/L	(MG/L
DATE	CACO3)	AS CA)	AS MG)	AS NA)	PERCENT		AS K)	CACO3)	AS 504)	AS CL)
SEP .	1978									
20	11	13	1.2	2.6	13	•2	• 2	26	11	2.2
		SOLIDS.					NITRO-			
	SILICA.	SUM DF	SOLIDS.	NITRO-	NITRO-	NITRO-	GEN.AM-			
	DIS-	CONSTI-	DIS-	GEN.	GEN.	GEN.	MONIA .	NITRO-	NITRD-	PHOS-
	SOLVED	TUENTS.	SOLVED	N02+N03	AIMONIA	DRGANIC	ORGANIC	GEN.	GEN.	PHORUS.
	(MG/L	DIS-	(TONS	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL	TOTAL
	AS	SOLVED	PER	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L	(MG/L
DATE	S102)	(MG/L)	AC-FT)	AS N)	AS NI	AS N)	AS N)	AS N)	AS ND3)	AS P)
SEP • 1	1978									
20	5.6	51	.07	.11	.04	.02	.06	.17	.80	.01

TABLE 5.--Daily suspended-sediment data for the Hoh River (site 16), March 1, 1978-February 1980

SEDIMENT DISCHARGE (TONS/DAY		0,0	, o	0		7.9		•	•		٠	•	9.6		• •								18			57	٠,	٠	6.5			· 4		. ~	3.6	346.3	
MEAN CONCEN- TRATION (MG/L)	MAY, 1978	,	~	ı (m	· 4	m	n	- د	→ .	-			-	-			~	ı	ю	4	4	4	4	(r	יי נ	י נ	n (v	2	ო	'n	- 20	•	2	-	;	
MEAN DISCHARGE (CFS)		1090	1090	1100	1060	970	0 70	0 1	000	000	0011	1200	1430	1490	1790	4020	3410		30	85	1640	58	1700	ď	1 0	מ כ	1270	v	2	1340	1820	1990	1620	1420	1350	48430	
SEDIMENT DISCHARGE (TONS/DAY)			16				ä	3 6		7,	+ (8°6	•	•	3,1	6.5	15		30	31	30	28	30	32	0	37		0 (25	25	18	18	10	6•3		9.,65	
MEAN CONCEN- TRATION (MG/L)	APRIL, 1978	4	4	4	4	'n	c	o a	.	o 4	; (7)	2	-	-	~	'n		10	3 ^	3	30	30	7	7		- •	ο.	ø	9	'n	2	e	~	-	;	
MEAN DISCHARGE (CFS)		ഗ	1480	1410	4	1470	1710	14.10	1380	000	1500	1510	1160	1200	1130	1100	1110		1110	1280	1220	1310	1380	67	1560	4	1630	3 6	1380	1350	1350	1310	1240	1160	:	41140	
SEDIMENT DISCHARGE (TONS/DAY)			13				12	312	ניני	4 00) c	S V	18	16	16	16	15		14	13	13	13	13	12	~	17	- v	١:	4150	300	7.2	36	30	56	19	2492	
MEAN CONCEN- TRATION (MG/L)	MARCH, 1978	ιO	ß	S	ß	ស	រហ	, r	0	9 6	2	տ	Ŋ	5	S	ഗ	S		S	S	S	2	ß	v.	ď) if	י כ	7 .	270	35	10	2	S	S	4	;	
MEAN DISCHARGE (CFS)		1000	046	910	870	840	0	0000	000	2000	00.1	1450	1320	1220	1220	1180	1120	1	1050	1000	978	396	930	416	9.0	0761	2000	2000	5710	17	68	67	20	1900	72	50972	
DAY		~	2	m	4	2	v	۸ (- 3	0 0		9	11		13	7	15		16	11	18	1,7	50	21		1 (3 4	j i	ر د	92	27	28	56	30	31	TOTAL	

SEDIMENT DISCHARGE (TONS/DAY)	œ	25	23	24	30	34	34	0 %	24	45	4.5	64	53	33	24	39	26	22	19	23	19	15	11	9.3	5430	66	823	311	130	73	65	65	9571.3
MEAN CONCEN- TRATION (MG/L)	AUGUST, 1978	6	30	20	σ	11			14		15	15	13		6	Φ	60	00	· 60	7	7	•	S	4	894	235	100	84	54	15	15	16	i
MEAN DISCHAHGE (CFS)		1010	1060	1130	1230	1130	1050	1060	1100	1200	1120	20	50	10	0	0	20	1000	06	1200	00	006	800	858	2250	3130	3050	2400	2000	1800	1600	1500	43078
SEDIMENT DISCHARGE (TONS/DAY)		77	52	34	27	22	18	19	19	19	17	19	54	32	36	4]	42	33	23	19	16	27	38	49	96	113	156	200	110	99	75	26	1527
MEAN CONCEN- TRATION (MG/L)	JULY, 1978	19		6	7	9	S	S	S	ហ	'n	vo	30	10	10	11	11	σ	. ~	• •	က	90	11	17	56	32	4 0	64	32	21	14	6	;
MEAN Discharge (CFS)		1510	1490	1410	1420	1330	1350	1410	1440	1430	1290	19	1110	20	1320	38	1420	1350	1230	1200	1200	1230	1290	1400	1370	1310	1440	1510	1270	1160	1100	1060	40820
SEDIMENT DISCHARGE (TONS/DAY)		7.9	56	64	103	170	135	0	•	7.2	61	8 4	53	69	63	4.5	37	· F	. 60	35	38	4	34	53	18	32	57	15	34	71	126	:	1719.9
MEAN CONCEN- TRATION (MG/L)	JUNE, 1978	2	•	13	19	53	54	20	17	14	12		11	12	12	10	6	œ	۰ ۲	· 00	σ	10		• •	S	ው	16	4	80	15	88	;	;
MEAN DISCHARGE (CFS)		1460	1620	1830	2010	2170	2090	1870	1770	1900	1880	1620	1790	2120	1940	1680	1520	1430	1490	1600	1550	1560	1580	1450	1340	1300	1310	1410	1580	1750	1670	1 1	50290
DAY		~	2	٣	4	S	•	_	- 00	o o	10				14	15	9(12	- a	61	20	2	. ~	23	24	25	56	27	80	56	30	31	TOTAL

SEDIMENT DISCHARGE (TONS/DAY)	978	•	4.8	'n	7530	350	107	304	421	211	39	46	8 4	2.7	16	8.9	100	Q 4	2 5	15	17					11	20	10	23	5 6	57	:	9554.3
MEAN CONCEN- TRATION (MG/L)	NOVEMBER, 1978	7	4	60	521	63	52	4 1	37	34	œ	11	13	80	ហ	m	66		• "	•	S	រប	ស	ហ	7	4	80	4	9	60	12	;	!
MEAN DISCHAKGE (CFS)		724	780	1170	5350	2060	1590	2750	4210	2300	1820	1550	1380	1250	1150	1100	0891	1780	1500	1430	1260	1150	1080	1020	766	986	930	970	1430	1190	1750	! !	48334
SEDIMENT DISCHARGE (TONS/DAY)	78	56	23	19	18	14	14	11	17	18	7.5	34	12	13	16	13		2 .	า อ	9.6	15	19	23	27	222	34	19		8.7	10	6•9	•	796.2
MEAN CONCEN- TRATION (MG/L)	OCTOBER, 1978	15	7	•	•	'n	S	•	• •	9	20	σ	4	S	•	S	ıſ	ur	ე ∢1	- 4	9	60	10	12	57	12	30	ស	4	4	ო	~	}
MEAN DISCHARGE (CFS)		1390	1240	1160	1140	1040	1020	03	1050	1120	1380	1410	1090	978	986	978	986	0.0	906	890	2	858	766	829	1440	1040	068	822	801	970	850	773	31717
SEDIMENT DISCHARGE (TONS/DAY)	, 1978	624	529	155	153	108	52	56	14	624	3460	223	105	75	99	56	29	[4	- 6	21	16	36	66	ഹ	102	63	46	95	56	52	45	:	6884
MEAN CONCEN- TRATION (MG/L)	SEPTEMBER, 1	7.7	54	23	23	20	12	_	4	20	210	52	15	12	12	1.1	11	ð	` ~	• •	ល	6	16	17	18	13	10	18	9	12	11	:	!
MEAN DISCHARGE (CFS)		3000	4000	5200	2700	2000	1600	1400	1300	3300	6100	3300	2600	2300	2000	1900	2000	1700	1500	1300	1200	1500	2300	3400	2100	1800	1700	1900	1600	1700	1500	;	67200
DAY		-	~	m	4	ß	9	7	3 0	6	10				14		16	1.7	18	19	20					52	56	27	28	53	30	31	TOTAL

TABLE 5.--Continued

DAY	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT Discharge (Tons/Day)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)	MEAN DISCHARGE (CFS)	MEAN CONCEN- TRATION (MG/L)	SEDIMENT DISCHARGE (TONS/DAY)
		DECEMBER, 19	, 1978		JANUARY, 1979	6/		FEBRUARY, 1979	979
7	1780	60	38	1020	F	8**	704	10	19
٨ı	1450	10	39	986	. –	2.7	686	12	2
m	1770		. e	946		. 9	710		5 6
4	1970	6	4 60	898	٠	2.4	801	16	, 4
Ŋ	1560	9	25	858	. ~	.e.	2010	23	125
9	1370	4	15	808	H	2.5	3780	120	1220
7	1250	~		759	-	0 %	3700	27	270
30	1170	• •	52	731		0.0	3170	52	445
σ	1340	19	69	717		1.9	4830	130	1700
10	1480	20	80	876	m	1.9	2980	17	137
11	0	118	978	1020	0.	60	2710	7	102
12	90	17	, o	980		, ic	0.05	182	1920
<u> </u>	67	- cc	3,5	900	1 3	, 4	07.0	453	0000
41	2380	53	8 4 6	898	٠ ١٠	12	4230	40	617
15	2090	, 6 0	. 4 . 10	866	m	7.0	2880	<u>,</u> 0	70
ì	ć		(i.	(6	•	į
9	3	0.7	29	815	.v	† •	2390	01	65
17	2250	ហ	30	787	2	4.2	0604	12	133
18	95	6		992	2	4.1	4300	14	163
19	63	4		922	_	17	3090	58	234
20	53	2	æ•3	2000	m	16	2430	17	112
21	47	~	7.9	1950	1		2050	10	55
25	1940	~		1410	4	15	1780	្ធស	24
23	93	2	11	1250	4	13	1620	m	13
24	89	2	16	1150	4	12	2920	402	17
52	13	2	12	1030	ю	8•3	13300	481	17300
56	1770	1	4.	978	m	6.7	7700	178	3700
27	1570		2.4	962	n	7.8	5080	55	713
28	1390	-	3.8	890	m	7.2	3620	38	371
59	1250		4.6	836	4	0.6	;		1
30	1160	-	3.1	801	54	117	}	:	;
31	1090	7	5.9	731	23	45	1	!	;
TOTAL	54760	;	1938.4	30743	}	398.3	99641	;	42760

SEDIMENT Discharge (Tons/Day)		21	19	23	38	7.0	95	68	46	24	21	19	8.	· •	` .	3 6	77	56	52	27	27	27	33	3 2	ָה ה	9	* 1	33	39	33	56	21	1 -	~ ~	1	1008
MEAN CONCEN- TRATION (MG/L)	MAY, 1979	ιΩ	S	9	7	· 6 0	10			5	ហ	Ŋ	ď	ນ ເ	ט נ	nı	n	9	•	_	7	7	ď	9 6	0 1	۱ ~	_	_	7	Φ.	•	ω (•	o 1~	•	!
MEAN DISCHARGE (CFS)		1520	1440	1400	2010	3250	3520	2750	2140	1790	1580	1430	1370	0.04		0261	1580	1590	1540	1430	1440	ന	60	0201	0991	1920	1810	1720	2050	2030	1610	1310	101	0.11	2011	54080
SEDIMENT DISCHARGE (TONS/DAY)	6	18	19	92	0 0	21	21	20	2	2 2 2	13	12	1 %	ל מ ע	o v	o i	35	33	39	65	47	37	ć	200	જ :	21	7,	10	9		9.	2 4		0 1		761
MEAN CONCEN- TRATION (MG/L)	APRIL, 1979	7	7	. ~	. ~		7	7	- 1	- 1	- 4	4	. u	n u	n ·	۰	•	7	6		10	σ.	ć	10 1	_	9	4	m	٣) (1)) 4	t 3	٠,	- 1		!
MEAN DISCHARGE (CFS)		958	1000	0 to 0	0 40	1090	1090	0 7 0 (0 4 6	1270	1230	1130	0 0	0927	0874	2820	2130	1730	1610	2000	1750	1520		1380	1310	1300	1270	1250	1 25.0	1370	2 1	1510	00+1	1510		45226
SEDIMENT DISCHARGE (TONS/DAY)	979	68	25	102	2	10400	7010	3140	יי איני איני		181	71.	0 (2 .	*	33	382	85	4	31	20	30	į	20	4	3,3	6.7	19	4	2 6				0 0		32931.0
MEAN CONCEN- TRATION (MG/L)	MARCH, 19	12	4	. 8	9 9	382	295	147	79	, 6	5 73 73	<u>,</u>	2 :	፣ '	10 -	9	59	15	10	7	50	· 00	į	†	*	~	~	9		? -	4 6	2 4	0 (~ 1	_	:
MEAN DISCHARGE (CFS)		2750	2310	0602	7630	10100	8800	4070	0.40		2910	26.70	0.00	2430	2170	2060	2400	2090	1790	1620	1480	1370	,	1320	1260	1240	1240	1200	941	0 4 0 1		1030	1030	0 0	20	84365
DAY		-	۰ ،	۳ ۳	η,	ֆ ւՆ	æ	, ,	~ 0	0 0	10		7				15	16	17	8 .	6	20		21	25	23	54	52	č	27	· 0	800	67	30	31	TOTAL

SEDIMENT DISCHARGE (TONS/DAY)	ō.	34	23	53	56	52					23	19	17	15	13	11	21	39	39	0 \$	36	37	47	45	35	34	32	33	32	33	27	56	872
MEAN CONCEN- TRATION (MG/L)	AUGUST, 1979	11	80	11	11	10	10	00	_	12	σ	30	~	٥	S	4	œ	15	15	14	14	14	16	15	15	15	14	14	13	13	12	12	:
MEAN DISCHARGE (CFS)		_	1060	0	892	940	876	408	868	839	932	006	806	646	966	985	196	196	196	1050	646	196	1080	1030	860	832	853	884	916	046	839	191	28952
SEDIMENT DISCHARGE (TONS/DAY)		10	7	5.3	. vi	55	52	105	1300	711	2550	m	O.	4	105	06	68	181	349	301	258	175	106	7.2	54	36	39	47	36	37	43	46	916
MEAN CONCEN- TRATION (MG/L)	JULY, 1979	23	22	23		19	18		176	115	248	160	99	28	52	22	20	37	67	65	55	39	56	22	16	12					14		ļ
MEAN DISCHARGE (CFS)		1660	1240	1020	286	1070	1070	0111	2730	2240	3810	54	9	89	1550	51	65	8	93	1890	84	1660	1350	1210	1240	1120	1200	1330	1120	1050	1130	1230	50845
SEDIMENT DISCHARGE (TONS/DAY)		25	50	95	S	133	93	39	21	32	4.6	7.5	53	32	22	15	18	22	4	31	36	17	4.60	7,4	20	36	55	7.6	80	95	4	<u> </u>	1509.4
MEAN CONCEN- TRATION (MG/L)	JUNE, 1979	7		19	31	54	18	10	٥	6	12	18	13	σ	7	2	9	7	60	10		9	ო	S	~	11	15	20	23	5 6	52	!	ł
MEAN DISCHARGE (CFS)		31	68	1850	82	90	92	1450	30	1320	43	1550	50	33	1180	1	*	15	0	1130	01	1070	1040	02	1060	20	36	1400	1290	1350	4 0	!	40610
DAY		-	~	ım	*	J.	9	_	- 30	0	10	11	12	13	14	15	16	17	18	19	20	21	22	23	54	5 2	56	27	28	56	30	31	TOTAL

SEDIMENT DISCHARGE (TONS/DAY)	979	88	57	58	55	45	32	52	20	30	28	27	58	52	54	23	27	41	64 3	6 43	0 4	36	06	130	81	61	4 4	31	22	19	38	1 1	1312
MEAN CONCEN- TRATION (MG/L)	NOVEMBER, 1979	18	13	12	12	11	0	20	7	11	11	11	11	11	==	11	12	13	14	15	16	17	2.	50	17	14	12	10	æ	7	12	:	1
MEAN DISCHARGE (CFS)		1820	1610	1790	1690	1510	1300	1170	1080	1000	676	806	868	839	804	783	839	1180	1150	1070	916	853	1760	2410	1760	1610	1360	1140	1040	985	1180	!	37374
SEDIMENT DISCHARGE (TONS/DAY)	979	4 4	37	22	14	27	56	56	56	52	56	22	22	18	16	14	12	12	11	7	13	14	31	В	255	13700	7.0	0686	0	290	343	142	53180
MEAN CONCEN- TRATION (MG/L)	OCTOBER, 1979	20	16	10	9	13	13	12	12	11	11	11	12	10	6	Ð	1	9	•	ហ	9	80	10	12	20	009	793	425	145	61	14	24	į
MEAN DISCHARGE (CFS)		818	846	811	892	755	748	804	197	825	860	734	069	678	549	099	654	714	678	825	190	648	1140	5490	1890	8470	12000	8620	5130	3580	2700	2190	64019
SEDIMENT DISCHARGE (TONS/DAY)	R, 1979	52	192	478	620	265	306	229	507	504	506	111	82	7.1	9	63	51	42	0,4	4.	4 8	38	22	15	11	18	56	52	113	70	69	!!	4722
MEAN COVCEN- TRATION (MG/L)	SEPTEMBER, 1	20	35	9	102	83	19	55	45	36	30	54	22	21	19	18	16	15	14	14	14		10	7	S	æ	12	2	37	30	54	:	;
MEAN DISCHARGE (CFS)		196	2030	2950	2250	2640	1690	1540	4170	5190	2540	1720	1380	1260	1270	1300	1170	1030	1070	1090	1140	766	832	804	190	825	006	954	1130	860	806	!	47364
DAY		-	2	m	4	S	¢	7	60	3	10	11	12	13	14	15	16	17	16	19	50	21	25	23	54	5 2	56	27	88	53	30	31	TOTAL

SEDIMER DISCHAF (TONS/L	080	166	6630	2250	221	169	247	187	141	112	16	86	7.8	19	62	57	5.2		95 L	7 0	797	0	90	68	85	80	88	130	92500	000	2980	:	1	198276
MEAN CONCEN- TRATION (MG/L)	FEBRUARY, 1980	20	300	125	19	19	18			17	17	17	17	16	16	16	5	4	1 5	1 4	CŢ.	14	14	14	20	20	20	1590	1470	560	140	!	1	ļ
MEAN DISCHARGE (CFS)		3080	8190	6680	4310	3300	5080	3850	2900	2450	2110	1870	1690	1550	1430	1330	1280	0061	0001	0.000	0 7 7 7	2760	2120	1790	1580	1490	1630	16600	23300	13200	7880	!	1	132560
SEDIMENT DISCHAKGE (TONS/DAY)	00	643	516	228	162	120	96	11	49	65	89	107	17100	3460	1030	557	431	70.0	200	200		138	110	106	102	66	06	83	16	89	65	62	63	26601
MEAN CONCEN- TRATION (MG/L)	JANUARY, 1980	56	65	56	23	20	18		14	15	17	25	496	210	102	09	ζ5	1 7	r a	200	55	28	54	54	23	23	2.5	22	22	21	21	21	70	:
MEAN DISCHAHGE (CFS)		4250	3870	3250	2610	2220	1970	1790	1700	1600	1480	1590	12800	6110	3750	3440	3070	2500	0.466	1000	0661	1820	1690	1630	1650	1600	1510	1390	1280	1200	1150	1100	1170	79510
SEDIMENT DISCHARGE (TONS/DAY)	6/	68	332	2270	88600	3520	1000	424	334	514	404	316	356	48600	298000	64000	17700	000795	149000	23200	9350	23500	13600	6460	3400	2230	1630	1130	634	366	336	324	470	1179768
MEAN CONCEN- TRATION (MG/L)	DECEMBER, 1979	21	37	4	3	250	76	48	94	6.4	41	39	39	54	2930	26	190	4140	2250	1150	100	763	534	374	9	8	~		63				52	;
MEAN DISCHARGE (CFS)		1200	3320	3470	17000	5210	3950	3270	7690	4430	4100	3000	3380	11700	37700	18800	8320	λ,	24500	2	2 :	*	4	0049	4810	4510	4730	4630	3730	3080	2650	2450	3350	269720
DAY		, ;	~	m	4	S	9	7	80	6	10	11	12	13	14	15	16	17	18	5		0.2	21	25	23	24	52	56	27	88	58	30	31	TOTAL

TABLE 6.--Mean daily discharge, in cubic feet per second, for Chalaat Creek (site 26) for water years 1977-79

=	197	7						19	978		_			
Day	Aug.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept
1	1.3	1.0	1.3	9.4				3.3	3.4	2.2	1.9	1.1	0.66	2.0
2	1.3	1.4	1.2	11.4				3.3	3.6	2.5	1.9	1.0	. 97	2.8
3	1.2	2.0	1.2				6.4	3.2	3.5	2.4	1.3	1.0	.90	2.6
4	1.2	2.0	1.2	4.8		7.2		3.0	3.8	2.3	1.4	. 96	.80	2.5
5	1.2	1.6	1.2					2.8	5.0	2.3	1.6	. 96	.77	2.5
6	1.2	1.4	1.2					2.7	5.9	2.1	1.4	1.0	.74	1.5
7	1.2	1.2	1.3	11.2				7.0	5.0	1.9	1.0	1.0	.74	1.2
8	1.1	1.2	1.3	12.5			12.3	8.1	4.3	1.9	1.3	1.0	.74	1.1
9	1.1	1.1	1.3				10.1	6.2	4.0	2.2	1.9	1.0	.71	13
10	1.0	1.0	1.3				8.0	4.5	3.5	2.0	2.3	1.1	.80	10
11	. 97	. 97	1.2	~-	~-		5.5	3.6	3.5	3.0	1.9	1.1	1.0	5.7
12	. 94	.90	1.2				5.4	3.6	3.2	2.9	1.4	1.0	. 97	3.4
13	.90	. 97	1.5				5.6	3.6	3.5	3.1	1.7	1.0	.94	3.3
14	.90	. 94	1.3	27.0	19.2	6.2	5.4	4.0	3.3	3.5	1.5	1.0	. 87	2.7
15	. 87	.90	1.2	14.8			5.9	4.3	4.2	7.2	1.4	. 97	8.3	2.3
16	. 87	. 87	1.1				5.2	3.8	4.4	5.0	1.2	. 97	1.7	2.3
17	. 87	. 87	1.0			5.5	4.8	3.6	4.0	3.5	1.2	. 90	1.2	2.8
18	. 87	1.4	1.0			5.0	4.6	3.1	4.5	2.4	1.4	.94	1.0	2.2
19	. 87	2.5	1.0			5.2	4.3	2.7	5.1	2.6	1.4	.90	.71	1.8
20	. 84	5.1	1.1				4.3	2.4	4.5	2.3	1.4	. 90	1.0	1.9
21	. 84	2.8	1.2	4.1		6.3	4.3	2.1	4.0	2.0	1.4	.84	. 97	2.1
22	. 80	1.8	1.3				3.7	2.3	4.1	1.9	1.3	.84	. 84	5.4
23	1.8	1.9	1.7				4.0	2.9	3.9	1.9	1.3	. 78	1.0	4.0
24	2.1	3.0	2.4				4.0	3.2	4.1	1.9	1.3	.74	3.0	3.0
25	2.1	6.0	3.2				4.5	5.1	3.6	1.9	1.3	.70	1.9	2.6
26	1.6	2.5	3.6	12.9			3.8	5.1	3.3	2.7	1.2	.66	1.6	1.9
27	1.4	1.8	2.5				3.6	5.6	3.2	3.8	1.2	.77	1.4	2.2
28	1.4	1.7	2.5	10.9			3.5	6.2	2.9	2.9	1.1	.74	1.2	2.0
29	1.5	1.6	3.5					4.0	2.5	2.3	1.1	.72	1.0	3.0
30	1.5	1.5	5.0	9.3				3.8	2.3	2.1	1.1	.70	. 92	1.7
31	1.2		5.9		~~	~~		3.6		2.0		. 66	1.2	
Mean	1.2	1.8	1.8					4.0	3.9	2.7	1.5	0.90	1.3	3.2
Average			•											
runoff (inches per month	1.4 h)	2.2	2.2					4.8	4.7	3.2	1.8	1.1	1.6	3.8

TABLE 6.--Mean daily discharge, in cubic feet per second, for Chalaat Creek (site 26), for water years 1977-79--Continued

						19	79					
Day	Oct.	Nov.	Dec.	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.
1	1.6	1.3	5.4	2.5	2.1	10	4.8	2.8	2.1	3.5	0.84	0.62
2	1.7	1.5	4.0	2.4		7.0	6.4	2.8	2.0	2.3	.84	.70
3	1.7	1.8		2.3		9.6	6.0	2.8	2.0	1.9	. 82	. 77
4	1.7	2.9	7.8	2.2		13	5.9	5.4	1.9	1.7	.80	1.5
5	1.5	2.1	5.3	2.2	5.9	24	7.5	8.9	2.8	1.5	.77	3.4
6	1.6	1.6	3.3	2.2	9.6	22	5.7	6.6	2.7	1.4	. 74	2.0
7	1.5	2.2	2.6	2.2	9.4	16	5.1	5.8	2.4	1.3	. 71	1.5
8	1.5	3.5	2.7	2.1	7.5	11	6.1	4.1	2.2	1.5	.71	1.7
9	1.8	3.0	2.7	2.1	8.0	7.5	7.4	3.2	2.1	1.7	. 70	2,2
10	1.8	2.3	3.5	3.5		6.4	7.4	3.0	1.9	2.1	. 66	2.3
11	1.9	2.0	4.4	2.9	7.3	6.0	6.9	2.9	1.8	2.8	. 64	1.5
12	1.6	1.6	3.6	2.7		5.7	6.5	2.8	1.7	1.8	.62	1.2
13	1.6	1.6	3.1	3.0	13	5.5	12	2.7	1.7	1.7	.60	. 92
14	1.5	1.7	4.2	2.8		4.1	5.9	2.6	1.6	1.7	.66	.77
15	1.4	1.6	6.3	2.5	6.7	6.3	6.0	2.6	1.8	1.6	.66	.76
16	1.4	2.6	8.8	2.3	5.7	5.8	6.4	2.3	1.6	1.5	.71	. 73
17	1.5	3.6	7.0	2.2		5.4	6.0	2.3	1.6	. 94	. 70	.71
18	1.2	3.0	4.6	2.2		5.1	4.3	2.3	1.6	.97	.74	.68
19	1.3	3.4	3.6	2.6		4.5	4.0	2.1	1.9	. 84	. 80	.60
20	1.9	2.2	3.3			4.5	3.7	2.0	1.7	.74	.78	.60
21	1.5	2.0				4.4	3.4	1.9	1.5	.66	.77	.71
22	1.4	1.9		3.0	5.4	4.4	3.2	1.9	1.3	.62	. 94	.67
23	1.4	1.9		2.8	4.8	3.9	2.9	1.9	1.4	1.6	. 71	.62
24	1.6	1.8		2.6	14	4.1	2.6	2.1	1.4	. 94	. 63	.58
25	1.5	1.7	3.3	2.4		3.6	2.5	2.1	1.5	1.1	.60	. 55
26	1.3	1.8	3.2	2.7	21	3.9	2.6	2.2	1.6	.87	. 60	.58
27	1.2	1.8	3.1	3.0	17	3.9	2.5	2.3	1.4	.71	.60	.97
28	1.3	2.3	2.9	2.7	16	3.9	2.5	2.4	1.5	. 97	.60	1.4
29	2.0	4.0	2.8	2.5		4.1	2.6	2.3	1.5	. 90	. 60	1.2
30	1.6	5.5	2.7	2.4		4.6	2.8	2.2	2.2	.94	. 58	1.3
31	1.5		2.6	3.0		3.7		2.1		.90	. 58	
W						7.0						
Mean	1.5	2.3				7.2	5.1	3.0	1.8	1.4	0.70	1.1
Average												
runoff	1.9	2.8				8.7	6.1	3.6	2.2	1.7	. 84	1.4
(inches									•			
per mont	h)											
-												

TABLE 7.--Miscellaneous streamflow measurements of Chalaat Creek (site 25) for 1977-79

			Measu	rement
Stream	Tributary to:	Location	Date	Discharge (ft /s)
12041230 Chalaat Creek	Hoh River	Lat 47°44'33", long 124°24'58", in NW\(\frac{1}{2}\)Sw., sec.20, T.26 N., R.13 W., Jefferson County, Hoh Indian Reservation, at road crossing near treatment plant, 0.8 mi (1.3 km) upstream from mouth, and 9.9 mi (15.9 km) northwest of Kalalock.	8-11-77 2-10-78 3-10-78 3-29-78 5-10-78 5-17-78 8-23-78 10-11-78 12- 9-78 1-31-79 4- 2-79 6- 4-79	6.02 3.67 3.66 1.99 2.40 .84 1.75 1.80 1.48 3.84
			8- 6-79 10- 4-79	• • •

TABLE 8.--Water-quality data for two sites on Chalaat Creek for 1978-79

SITE 25, (12041230) - CHALAAT CREEK AT TREATMENT PLANT, HOH RESERVATION, WASH (LAT 47 44 32 LONG 124 24 58)

OATE	¥I:	ME	STREA FLOW INSTA TANEC (CFS	in-	SPE- CIFI CON- DUCT ANCE MICR MHOS	- :-	P+ UN I 1		TEMPI ATUI (DEG	PΕ	UT 11 TL)	D- Y	SOL	EN. S- VED		AL. ED. S.	FOI FEI O. UM-	LI- RM. CAL. 7 -MF LS./	HAR NES (MG AS CAC	S /L	HARD NESS NONCA BONAT (MG/ CACO	AR- TE
MAR . 19	978																					
29 May	119	50	4.	0		41	7	.0	1	1.2		1	1	0.5		260		3		10		1
17	100	00	2.	9		50			10	8.0				9.8				14				
02	110	0	1.	0		64	7	•5	12	8.8				9,7				10				
D4	ATE	DI SO	CIUM S= ULVED IG/L CA)	SIL DIS SOLY (MG/ AS	JM+ S= /ED /L	SODIL DIS- SOLVE (MG/ AS N	D L	SOD I		S01	DIUM AD- RP- ION TIO	\$ 50 (M	TAS- IUM· IS- LVED G/L K)	80N	AR- ATE G/L AS (3)			LIN (M)	G/L	D10 D S0 (M	RAON XIDE IS- LVED G/L CO2)	
	R • 19	978																	_			
25 7 A M	9 Y		2.3	1	.1	4	. 9		50		. 7		•5		11		0		9		1.8	
17	7																					
AUG 02	s ?•••																					

ANALYSES OF SAMPLES COLLECTED AT MISCELLANEOUS SITES

WATER QUALITY DATA, WATER YEAR OCTOBER 1977 TO SEPTEMBER 1978

SITE 25, (12041230) - CHALAAT CREEK AT TREATMENT PLANT, HOH RESERVATION, WASH --Continued

	•	,					•				
		SULFATE DIS- SOLVED (MG/L	CHLO- RIDE. DIS- SOLVEO		NITRO- GEN; AMMONIA TOTAL (MG/L	GEN.	MONIA	M- • NITRO IC GENO L TOTAL	GEN.	PHORUS.	PHOS- PHORUS, ORTHO: DIS- SOLVED (MG/L
	DATE	AS 504)	(MG/L AS CL)	(MG/L AS N)	AS N)	AS N)	AS N			3) AS PI	AS P)
	MAR .] 29	8.2	7.7	.02	.07	.21	.:	36 .3	38 1.:	.02	.00
	17					. <u>-</u> .			 .		·
	AUG 02								. . .		
	02										
	DATE	PHOS- PHATE. ORTHO. OIS- SOLVED (MG/L AS PO4)	ARSENIC DIS- SOLVED (UG/L AS AS)	015-	CADMIUM DIS- SOLVED (UG/L AS CD)	DIS- SOLVEI (UG/L	(UG/L	715- 50 SOLVE 106/L	RECOVERABLE (UG/L	SILVEH• PIS- E SOLVEO (UG/L	DIS- SOLVED (UG/L
	MAP . 1	079									
	29	.00	0	0	0)	0	7 .	.0 0	0
	MAY										
	17 AUG										
	02							-			
SITE 26, (12	041234)	- CHALAA	T CREEK A	T COMMUNI	TY CENTER	, HOH RES	SERVATIO	N, WASH (I	LAT 47 44	45 LONG 12	24 25 20)
			SPE-					COLI-	COLI-		
			CIFIC					FORM,	FORM.		HARD-
		STREAM-	CON- DUCT-			TUR-	OXYGEN	TOTAL JMMED		MARD-	NESS.
		INSTAN-	ANCE	PH	TEMPER-	510-	DIS-	ICOLS.	U4-4F	(MG/L	BONATE
DATE	TIME	TANFOUS (CFS)	(WICHO-		ATURE	ITY	SOLVE		(COLS.		(MG/L
DATE		(67.5)	MHOS	(UNITS)	(OEG C)	(JTU)	(MG/L) 100 ML) 100 ML) CACO3)	CACO3)
MAR + 197											
29 May	1040	4.0	57	7.0	10.0	1	8.	9 14	0	2 13	2
17	1105	3.5	62		11.4		9.	6 -	-	6	
AUG										_	
02	1145	1.0	77	6.2	14.0		6.	•	- кз	3	
	c		GNE- IUM• SOC	. •	S		OTAS-	•••			ARBON
	DIS)]UM+ S-	S			ICAR- ONATE			OXIDE Dis-
				VED			OLVED				OLVEO
DATE					IUM RI CENT		MG/L S K)		(MG/L S CO3)		MG/L CO2)
MAR :	1978	2.9	1.4	6.1	50	.7	.3	14	0	11	2.2
MAY			•••	•••		• '	•••	• •	•	••	
17	•										
AUG 02											
****	•										
		CH	L0- N	TRO- N1	TRO- N		ITRO- N.AM-				HDS- ORUS•
	SUL						NIA +	NITRO-	NITRO-		RTHO.
	019						GANIC	GEN.			DIS-
							OTAL MG/L		TOTAL (MG/L		LVED MG/L
DATE							S N)				S P)
MAR .	1978										
29.		3.3	9.6	.05	.11	. 34	.45	.50	2.2	.04	.01
MAY											
17	•										
02.	•										
	PHO	os-									
	PHA	ATE.				HRO~			EPCURY		
							PPER. IS-		TOTAL S		INC.
											DIS- OLVED
.	(MC	i/L (U	G/L (L	JG/L (L	G/L (UG/L (UG/L	(U6/L	(U6/L	(UG/L (UG/L
DATE	AS F	-U4) AS	AS) AS	SA) AS	CD) A	S CR) A	S CU)	AS PB)	AS HG)	AS AG) A	S ZN)
	197A										
29		.03	O	0	1	0	0	3	.0	0	0
	•	• 0.3									
MAY		•••									
MAY 17., AUG	•	• -									
MAY 17.,	•										

SITE 25, (12041230) CHALAAT CREEK AT TREATMENT PLANT, HOH RESERVATION, WA

LOCATION. -- Lat 47°44'33", long 124°24'58", in NWMSWW sec.20, T.26 N., R.13 E., Jefferson County, Hoh Indian Reservation, at road crossing near treatment plant, 0.8 mi (1.3 km) upstream from mouth, and 9.9 mi (15.9 km) northwest of Kalaloch.

PERIOD OF RECORD. -- August 1977 to May 1979 (discontinued).

WATER QUALITY NOVEMBER 1978 TO MAY 1979

			OATE	TIME	STREAM- FLOW+ INSTAN- TANEOUS (CFS)		PH (UNITS)	TEMPER- ATURE (DEG C)	OXYGEN+ DIS- SOLVED (MG/L)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./		
			NOV . 197	78 1025	1.9	55	6.7	6.2	11.0	ı		
			JAN , 197	19 1015	1.5	53	7.0	1.0	13.1	<1		
			MAR 27	1105	3.4	53	7.1	7.6	10.8	2		
			SS	1050	1.7	52	6.7	13.0	9.7	8		
		DATE	TIME	HARD- NESS (MG/L AS CACO3	NONCAR- HONATE (MG/L	- DIS- SOLVEC (MG/L	DIS-) SOLVEI (MG/L	SODIUM DIS- D SOLVED (MG/L				
		NOV ,		1	3	2.0	1.4	. 5.	7 4	8 .7		
		JAN ,	1979			2 2.5				3 .8		
		22				3.9				6 .7		
				•								
		DATE	BICAR- BONATE (MG/L AS HCU3)	CAR- BONATE (MG/L AS CO3	. AS	DIS- SOLVED (MG/L	SULFATE DIS- SOLVE	DIS- D SOLVE (MG/L	CONSTITUENTS D DIS- SOLVE	SOLIOS DIS SOLVED (TONS D PER		
		NOV .		-	- 1.	2	- 4.0	8.	3 -			
		JAN .			- 1	ı	- 3.5	5 8.	5 -			
		22	. 13		0 1	4.8	2 4.	7 8.	a 3	2 .04		
			DATE	TIME	NITRD- GEN+ NITRATE TOTAL (MG/L AS N)	NITRO- GEN+ NITRITE TOTAL (MG/L AS N)	NITRO- GEN: NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN+ AMMONIA TOTAL (MG/L AS N)	NITRO- GEN. ORGANIC TOTAL (MG/L AS N)	MONIA +		
			NOV , 19 28		.03	.01	.04	.01	.13	.14		
			MAY , 19		.02	.00	.02	.03	.07	.10		
			85 Yam	G T ()	EN+ GI TAL TO IG/L (MI	EN: PHOR FAL TOT 5/L (MG NO3) AS	DS- PHOP RUS- DIS FAL SOL S/L (MI P) AS	05- PHO RUS, OR 5- D LVED SOL 3/L (M	RUS. PH THO, DR IS- D VED SO G/L (M	05- ATE. THO. IS- LVED G/L PO4)		
UATE	TIME	ARSEI UI SUL (UG. AS	S- 015 VEO 50LV /L (UG.	- D EU SU /L (U	G/L (UG	M. COPP	- 01 VED SOL /L (UG	D+ TO' S- REG VED ERG VL (UC	CDV- DI ABLE SOI S/L (U	SELE- CURY NIUM: 1S- DIS- LYED SOLVED 3/L (UG/L HG) AS SE)	(UG/L	ZINC+ DIS- SOLVED (UG/L AS ZN)
MAH + 19	79 1105		O	U	0	10	0	U		.1 0	0	20
MAY 22	1050		i	0	1	0	0	0	•1	0		10
	3		-	-	-	-	-	-		•	•	

SITE 26,(12041234) CHALAAT CREEK AT COMMUNITY CENTER, HOH RESERVATION, WA

LOCATION. -- Lat 47°44'45", long 124°25'20", in SE\nE\s sec.19, T.26 N., R.13 W., Jefferson County, Hoh Indian Reservation, at road crossing near Community Reservation, 0.3 mi (0.5 km) upstream from mouth, and 10.2 mi (16.4 km) northwest of Kalaloch.

PERIOD OF RECORD. -- August 1977 to May 1979 (discontinued).

WATER QUALITY DATA

	WATER QUALITY DA	'A		
	SPE- CIFIC STREAM- CON- FLOW- DUCT- INSTAN- ANCE PM TIME TANEOUS (MICRO- TE (CFS) MHOS) (UNIT	ATURE SOLVED	COLI- FORM. FECAL. 0.7 UM-MF (COL5./	
		, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
	• 1978 ••• 1135 2•3 65 6 • 1979	.5 6.6 10.0	16	
		.5 2.2 12.2	<1	
	1150 3.9 60 6	.8 8.6 9.8	5	
	1200 1.8 61 6	.5 12.2 10.1	22	
	MARD- MAGN HARD- NESS, CALCIUM SIU NESS HONCAR- DIS- DIS (MG/L BONATE SOLVED SOLV	IM. SODIUM. S- DIS-	SODIUM AD- BICAR SORP- BONAT	Έ
	4E AS (MG/L (MG/L (MG/ CACO3) CACO3) AS CA) AS P	L (MG/L SODIUM	RATIO AS	-
	CACUS) CACUS) AS CA! AS P	MA MAY PERCENT	neus	•
•	35 16 0 3.4 1	.6 7.2 49	.8	
•	15 14 5 3.2 1	.5 7.9 54	.9	
4	00 17 8 4.S I	.5 6.6 44	.7	11
	CARBON ALKA DIOXIDE SULFATE CAR- LINITY DIS- 01S- BONATE (MG/L SOLVED SOLVED (MG/L AS (MG/L (MG/L AS CO3) AS CO2) AS SC4)	RIDE+ CONSTI- DIS- TUENTS+ SO SOLVED DIS- (T (MG/L SOLVED P	LIDS. SOLIDS. DIS- DIS- OLVEO SOLVEO TOMS (TOMS PER PER C-FT) DAY)	
	978 16 4.5	9.0		
	779 9 3.5	10		
		10 36		
	0 9 5.6 7.7	NITRO-	.05 .17	
TIM DATE	NITRO- NITRO- NITRO- GEN. GEN. GEN. GEN. GEN. GEN. GEN. GEN.	GEN.AM- MONIA • NITRO- NI ORGANIC GEN. (TDTAL TDTAL TC (MG/L (MG/L ()	ITRO- PHOS- GEN, PHOS,	PHOS- PHOS- PHORUS. PHATE. DRTHO. ORTHO. DIS- DIS- SOLVED SOLVED (MG/L (MG/L AS P) AS PO4)
OV , 1978				
28 Il3 Ay , 1979	.01 .05 .01 .08	.09 .14	.62 .020	.01 .03
22 120	.00 .04 .03 .15	.18 .22	.97 .020	.03 .09
TIM DATE	### CADMIUM ###################################	DIS- RECOV- C SOLVED ERABLE SC (UG/L (UG/L (L	SELE- RCURY NIUM. DIS- DIS- OLYEO SOLVEO UG/L (UG/L S HG) AS SE)	SILVER+ ZINC+ DIS- DIS- SOLVED SOLVED (UG/L (UG/L AS AG) AS ZN)
AR . 1979 27 115	0 0 0 0	1	.2 0	0 20
22 120	0 1 0 0	0 .1	0	0 10
TIM DATE AR . 1979 27 115	CHRO- CADMIUM MIUM COPPER DIS- D	MERCURY LEAD+ TOTAL MER OIS- RECOV- C SOLVED EMARLE SC (UG/L (UG/L (UG/L AS PB) AS HG) AS	SELE- RCURY NIUM. 015- 015- 017- 018- 017- 018- 018- 018- 018- 018- 018- 018- 018-	SILVER, DIS- SOLVED (UG/L AS AG)